F2VD

Kecheng Yang, Ashikahmed Bhuiyan, Zhishan Guo
{"title":"F2VD","authors":"Kecheng Yang, Ashikahmed Bhuiyan, Zhishan Guo","doi":"10.1145/3400302.3415716","DOIUrl":null,"url":null,"abstract":"Increasingly complex and integrated systems design has led to more timing uncertainty, which may result in pessimism in time-sensitive system design and analysis. To mitigate such pessimism, mixed-criticality (MC) design for real-time systems has been proposed, where highly critical tasks, often with extremely pessimistic execution time estimates, can share the processor with less critical ones in a manner that the latter is sacrificed, completely or partially, to guarantee temporal correctness to the former, when the extremely pessimistic scenario does happen. In contrast to such sacrifice of tasks, the precise MC scheduling model has recently been investigated, where all tasks, including less critical ones, must fully complete their execution in all circumstances. Meanwhile, the processor may operate at a degraded speed when the tasks' runtime behaviors are far from the extreme pessimistic estimates and would recover to the full processing speed once the extremely pessimistic scenario does happen. This paper presents a generalized fluid-scheduling-based solution to this problem, where feasible fluid-scheduling rates for each task are derived from an optimization problem. Furthermore, this paper proposes a novel algorithm F2VD for setting virtual deadlines from any feasible fluid rates, such that any fluid-scheduling-based solution can be converted to a deadline-based scheduling approach with no schedulability loss, where the latter is generally considered much more practical and easier to implement. Experimental studies based on randomly generated task sets are conducted to verify the theoretical results as well as the effectiveness of the proposed algorithms.","PeriodicalId":367868,"journal":{"name":"Proceedings of the 39th International Conference on Computer-Aided Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400302.3415716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Increasingly complex and integrated systems design has led to more timing uncertainty, which may result in pessimism in time-sensitive system design and analysis. To mitigate such pessimism, mixed-criticality (MC) design for real-time systems has been proposed, where highly critical tasks, often with extremely pessimistic execution time estimates, can share the processor with less critical ones in a manner that the latter is sacrificed, completely or partially, to guarantee temporal correctness to the former, when the extremely pessimistic scenario does happen. In contrast to such sacrifice of tasks, the precise MC scheduling model has recently been investigated, where all tasks, including less critical ones, must fully complete their execution in all circumstances. Meanwhile, the processor may operate at a degraded speed when the tasks' runtime behaviors are far from the extreme pessimistic estimates and would recover to the full processing speed once the extremely pessimistic scenario does happen. This paper presents a generalized fluid-scheduling-based solution to this problem, where feasible fluid-scheduling rates for each task are derived from an optimization problem. Furthermore, this paper proposes a novel algorithm F2VD for setting virtual deadlines from any feasible fluid rates, such that any fluid-scheduling-based solution can be converted to a deadline-based scheduling approach with no schedulability loss, where the latter is generally considered much more practical and easier to implement. Experimental studies based on randomly generated task sets are conducted to verify the theoretical results as well as the effectiveness of the proposed algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信