Can machine learning help predict the outcome of asylum adjudications?

Daniel L. Chen, Jess Eagel
{"title":"Can machine learning help predict the outcome of asylum adjudications?","authors":"Daniel L. Chen, Jess Eagel","doi":"10.1145/3086512.3086538","DOIUrl":null,"url":null,"abstract":"In this study, we analyzed 492,903 asylum hearings from 336 different hearing locations, rendered by 441 unique judges over a 32 year period from 1981-2013. We define the problem of asylum adjudication prediction as a binary classification task, and using the random forest method developed by Breiman [1], we predict 27 years of refugee decisions. Using only data available up to the decision date, our model correctly classifies 82 percent of all refugee cases by 2013. Our empirical analysis suggests that decision makers exhibit a fair degree of autocorrelation in their rulings, and extraneous factors such as, news and the local weather may be impacting the fate of an asylum seeker. Surprisingly, granting asylum is predominantly driven by trend features and judicial characteristics- features that may seem unfair- and roughly one third-driven by case information, news events, and court information.","PeriodicalId":425187,"journal":{"name":"Proceedings of the 16th edition of the International Conference on Articial Intelligence and Law","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th edition of the International Conference on Articial Intelligence and Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3086512.3086538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

In this study, we analyzed 492,903 asylum hearings from 336 different hearing locations, rendered by 441 unique judges over a 32 year period from 1981-2013. We define the problem of asylum adjudication prediction as a binary classification task, and using the random forest method developed by Breiman [1], we predict 27 years of refugee decisions. Using only data available up to the decision date, our model correctly classifies 82 percent of all refugee cases by 2013. Our empirical analysis suggests that decision makers exhibit a fair degree of autocorrelation in their rulings, and extraneous factors such as, news and the local weather may be impacting the fate of an asylum seeker. Surprisingly, granting asylum is predominantly driven by trend features and judicial characteristics- features that may seem unfair- and roughly one third-driven by case information, news events, and court information.
机器学习能帮助预测庇护裁决的结果吗?
在这项研究中,我们分析了336个不同听证会地点的492903起庇护听证会,这些听证会由441名不同的法官在1981年至2013年的32年间审理。我们将庇护裁决预测问题定义为一个二元分类任务,并使用Breiman[1]开发的随机森林方法,我们预测了27年的难民决策。仅使用截止决策日期的可用数据,我们的模型正确分类了2013年所有难民案件的82%。我们的实证分析表明,决策者在他们的裁决中表现出一定程度的自相关性,而新闻和当地天气等无关因素可能会影响寻求庇护者的命运。令人惊讶的是,给予庇护主要是由趋势特征和司法特征驱动的——这些特征可能看起来不公平——大约三分之一是由案件信息、新闻事件和法院信息驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信