A low power optimal motion search algorithm

Shih-Chang Hsia, Wei-Chih Hsu, Po-yuan Cheng
{"title":"A low power optimal motion search algorithm","authors":"Shih-Chang Hsia, Wei-Chih Hsu, Po-yuan Cheng","doi":"10.1109/TENCON.1999.818373","DOIUrl":null,"url":null,"abstract":"We propose an efficient algorithm using temporal correlation, which employs a lower computational complexity but without sacrificing the accuracy. To achieve this goal, two techniques are employed, one is recursive motion vector estimation, and the other is a hierarchical layer processing for different motion feature. With this approach, we can attain near-global optimization and local optimization. In the final evaluation, the proposed complexity is only 1/2/spl sim/1/5 of full search, but the accuracy is slightly higher than one of full search in the particular range.","PeriodicalId":121142,"journal":{"name":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1999.818373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an efficient algorithm using temporal correlation, which employs a lower computational complexity but without sacrificing the accuracy. To achieve this goal, two techniques are employed, one is recursive motion vector estimation, and the other is a hierarchical layer processing for different motion feature. With this approach, we can attain near-global optimization and local optimization. In the final evaluation, the proposed complexity is only 1/2/spl sim/1/5 of full search, but the accuracy is slightly higher than one of full search in the particular range.
一种低功耗最优运动搜索算法
我们提出了一种利用时间相关的高效算法,该算法在不牺牲精度的前提下降低了计算复杂度。为了实现这一目标,采用了两种技术,一种是递归运动矢量估计,另一种是针对不同的运动特征进行分层处理。利用这种方法,我们可以实现近全局优化和局部优化。在最后的评估中,所提出的复杂度仅为全搜索的1/2/spl sim/1/5,但在特定范围内精度略高于全搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信