Efficient Semi-Parametric Estimation of Non-Gaussian GARCH Processes

Frédéric Godin, A. Luong
{"title":"Efficient Semi-Parametric Estimation of Non-Gaussian GARCH Processes","authors":"Frédéric Godin, A. Luong","doi":"10.2139/ssrn.2879744","DOIUrl":null,"url":null,"abstract":"Semi-parametric estimators for non-Gaussian GARCH processes based on Feasible Weighted Least Squares (FWLS) are proposed. The estimators are consistent and do not require the specification of the innovations distribution family. The FWLS estimators incorporate information related to the skewness and kurtosis of residuals. This improves their efficiency in comparison to Normal Quasi-Maximum Likelihood (NQML) estimators which only rely on the first two conditional moments. The improved efficiency of FWLS estimators is illustrated in a simulation experiment; the estimation RMSE decreases observed by using the FWLS estimator instead of the NQML range between 0.07% and 10.3% for all parameters of the considered NGARCH with Variance-Gamma innovations. The methodology is also shown to be applicable for the estimation of multivariate GARCH processes.","PeriodicalId":122400,"journal":{"name":"IRPN: Innovation & Econometrics (Topic)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRPN: Innovation & Econometrics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2879744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-parametric estimators for non-Gaussian GARCH processes based on Feasible Weighted Least Squares (FWLS) are proposed. The estimators are consistent and do not require the specification of the innovations distribution family. The FWLS estimators incorporate information related to the skewness and kurtosis of residuals. This improves their efficiency in comparison to Normal Quasi-Maximum Likelihood (NQML) estimators which only rely on the first two conditional moments. The improved efficiency of FWLS estimators is illustrated in a simulation experiment; the estimation RMSE decreases observed by using the FWLS estimator instead of the NQML range between 0.07% and 10.3% for all parameters of the considered NGARCH with Variance-Gamma innovations. The methodology is also shown to be applicable for the estimation of multivariate GARCH processes.
非高斯GARCH过程的有效半参数估计
提出了基于可行加权最小二乘(FWLS)的非高斯GARCH过程半参数估计方法。估算器是一致的,并且不需要创新分布族的规范。FWLS估计器包含了与残差的偏度和峰度相关的信息。与仅依赖前两个条件矩的正态拟极大似然(NQML)估计器相比,这提高了它们的效率。仿真实验说明了FWLS估计器提高了估计效率;使用FWLS估计器而不是NQML估计器,使用方差-伽马创新的NGARCH的所有参数的估计RMSE在0.07%到10.3%之间。该方法同样适用于多元GARCH过程的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信