{"title":"A Five –level PWM Inverter for Hybrid PV/Fuel Cell/Battery Standalone power System","authors":"S. Yadav, K. Sandhu","doi":"10.1109/SCEECS.2018.8546859","DOIUrl":null,"url":null,"abstract":"Renewable energy sources (RES) based generation has emerged as one of the best option due to global environmental concerns, especially for off-grid load locations like islands, mountains, etc., where diesel generators are main source of power generation. This paper presents a case study of an efficient photovoltaic (PV) generation integrated with multilevel inverter to ensure regulated power at user end. Perturb and observe (PO) algorithm based maximum power point tracking (MPPT) has been used to track maximum power for PV applications. However in PV based power generation, control problem arises due to large variation of irradiance round the clock. This problem can be overcome by hybrid PV generation system, i.e., application of secondary power source as battery and fuel cell integrated with PV generation unit. The DC output of standalone hybrid PV-SOFC-Battery generation system is inverted by a single-phase multilevel converter. This output of developed standalone hybrid PV-SOFC-Battery generation system is used to supply the single-phase load. This inverter offers less THD which is compared with three level inverter.","PeriodicalId":446667,"journal":{"name":"2018 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCEECS.2018.8546859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Renewable energy sources (RES) based generation has emerged as one of the best option due to global environmental concerns, especially for off-grid load locations like islands, mountains, etc., where diesel generators are main source of power generation. This paper presents a case study of an efficient photovoltaic (PV) generation integrated with multilevel inverter to ensure regulated power at user end. Perturb and observe (PO) algorithm based maximum power point tracking (MPPT) has been used to track maximum power for PV applications. However in PV based power generation, control problem arises due to large variation of irradiance round the clock. This problem can be overcome by hybrid PV generation system, i.e., application of secondary power source as battery and fuel cell integrated with PV generation unit. The DC output of standalone hybrid PV-SOFC-Battery generation system is inverted by a single-phase multilevel converter. This output of developed standalone hybrid PV-SOFC-Battery generation system is used to supply the single-phase load. This inverter offers less THD which is compared with three level inverter.