Efficient computation of small abstraction refinements

Bing Li, F. Somenzi
{"title":"Efficient computation of small abstraction refinements","authors":"Bing Li, F. Somenzi","doi":"10.1109/ICCAD.2004.1382632","DOIUrl":null,"url":null,"abstract":"In the abstraction refinement approach to model checking, the discovery of spurious counterexamples in the current abstract model triggers its refinement. The proof - produced by a SAT solver - that the abstract counterexamples cannot be concretized can be used to identify the circuit elements or predicates that should be added to the model. It is common, however, for the refinements thus computed to be highly redundant. A costly minimization phase is therefore often needed to prevent excessive growth of the abstract model. In This work we show how to modify the search strategy of a SAT solver so that it generates refinements that are close to minimal, thus greatly reducing the time required for their minimization.","PeriodicalId":255227,"journal":{"name":"IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2004.1382632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In the abstraction refinement approach to model checking, the discovery of spurious counterexamples in the current abstract model triggers its refinement. The proof - produced by a SAT solver - that the abstract counterexamples cannot be concretized can be used to identify the circuit elements or predicates that should be added to the model. It is common, however, for the refinements thus computed to be highly redundant. A costly minimization phase is therefore often needed to prevent excessive growth of the abstract model. In This work we show how to modify the search strategy of a SAT solver so that it generates refinements that are close to minimal, thus greatly reducing the time required for their minimization.
小抽象细化的高效计算
在模型检查的抽象细化方法中,在当前抽象模型中发现虚假反例会触发对其进行细化。由SAT求解器生成的证明——抽象反例不能具体化——可以用来识别应该添加到模型中的电路元件或谓词。然而,这样计算出来的精细化通常是高度冗余的。因此,通常需要一个代价高昂的最小化阶段来防止抽象模型的过度增长。在这项工作中,我们展示了如何修改SAT求解器的搜索策略,使其产生接近最小的细化,从而大大减少最小化所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信