{"title":"Low cost design of HF-band RFID system for mobile robot self-localization based on multiple readers and tags","authors":"Jian Mi, Yasutake Takahashi","doi":"10.1109/ROBIO.2015.7418766","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on configuring a low cost RFID (Radio Frequency IDentification) system with less RFID readers and low density RFID tag textiles for stable and accurate self-localization for an omni-directional mobile robot. An RFID system using multiple RFID readers and high density RFID tags has already been applied to an indoor mobile robot self-localization. However, the system production cost is relatively high. To reduce the production cost of the system while maintaining the self-localization performance, we redesign two new RFID systems configured with 20 RFID readers and 5 RFID readers enlarging the size of an RFID reader antenna. Particularly, a new likelihood function of the tag detection with the redesigned large size RFID reader antenna is proposed for Monte Carlo Localization (MCL). Furthermore, we come up with a novel arrangement of RFID tags installed in a hexagon pattern. The new arrangement of ID tags enables both low cost ID tag installation and high performance of self-localization. We examine the performances of robot self-localization with less RFID readers and lower density RFID tags installed on the floor based on MCL(Monte Carlo localization). The simulation demonstrates the validity of our proposed configuration of the RFID based self-localization.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7418766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
In this paper, we focus on configuring a low cost RFID (Radio Frequency IDentification) system with less RFID readers and low density RFID tag textiles for stable and accurate self-localization for an omni-directional mobile robot. An RFID system using multiple RFID readers and high density RFID tags has already been applied to an indoor mobile robot self-localization. However, the system production cost is relatively high. To reduce the production cost of the system while maintaining the self-localization performance, we redesign two new RFID systems configured with 20 RFID readers and 5 RFID readers enlarging the size of an RFID reader antenna. Particularly, a new likelihood function of the tag detection with the redesigned large size RFID reader antenna is proposed for Monte Carlo Localization (MCL). Furthermore, we come up with a novel arrangement of RFID tags installed in a hexagon pattern. The new arrangement of ID tags enables both low cost ID tag installation and high performance of self-localization. We examine the performances of robot self-localization with less RFID readers and lower density RFID tags installed on the floor based on MCL(Monte Carlo localization). The simulation demonstrates the validity of our proposed configuration of the RFID based self-localization.