On suboptimal multidimensional companding

S. Simon
{"title":"On suboptimal multidimensional companding","authors":"S. Simon","doi":"10.1109/DCC.1998.672191","DOIUrl":null,"url":null,"abstract":"A vector quantizer (VQ) consisting of a nonlinear mapping (compressor), a lattice VQ, and the inverse of the compressor (expander) is considered. While it was previously pointed out that in dimensions k>2 except for linear transformations and translations only reflections through reciprocal radii can preserve optimality in terms of the lattice cells' normalized second moments, we consider the suboptimal case and provide a method to determine the loss introduced by companding. Using a spherically symmetric compander as an example, it is demonstrated that the loss can be kept very small in practical situations, especially when large VQ dimensions are chosen.","PeriodicalId":191890,"journal":{"name":"Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1998.672191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A vector quantizer (VQ) consisting of a nonlinear mapping (compressor), a lattice VQ, and the inverse of the compressor (expander) is considered. While it was previously pointed out that in dimensions k>2 except for linear transformations and translations only reflections through reciprocal radii can preserve optimality in terms of the lattice cells' normalized second moments, we consider the suboptimal case and provide a method to determine the loss introduced by companding. Using a spherically symmetric compander as an example, it is demonstrated that the loss can be kept very small in practical situations, especially when large VQ dimensions are chosen.
关于次优多维扩展
考虑了一个由非线性映射(压缩器)、晶格VQ和压缩器的逆(扩展器)组成的矢量量化器(VQ)。虽然之前已经指出,在k>2的维度中,除了线性变换和平移之外,只有通过倒半径的反射才能在晶格单元的标准化第二矩方面保持最优性,但我们考虑了次优情况,并提供了一种确定由扩展引入的损失的方法。以球对称滤波器为例,证明了在实际情况下,特别是选择较大的VQ尺寸时,损耗可以保持在很小的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信