A Static Neural Network for Input-Output Mapping of Power Electronic Circuits

S. Mohagheghi, R. Harley, T. Habetler, D. Divan
{"title":"A Static Neural Network for Input-Output Mapping of Power Electronic Circuits","authors":"S. Mohagheghi, R. Harley, T. Habetler, D. Divan","doi":"10.1109/DEMPED.2007.4393116","DOIUrl":null,"url":null,"abstract":"This paper investigates the effectiveness of a static neural network for input-output mapping of power electronic circuits. The neural network is a multilayer perceptron (MLP) that is trained to form a mapping between the inputs and outputs of a power electronic circuit. The circuit consists of a full bridge diode rectifier, together with the source inductance and the output filter. Dynamic models have been used for the rectifier diodes. The ultimate objective of the designed neural network is to provide an indication when the performance properties of one or more components in the rectifier circuit have changed. Simulation results are provided that indicate the neural network is capable of mapping the inputs and outputs of the circuit and detect operating conditions that are different from the original condition.","PeriodicalId":185737,"journal":{"name":"2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2007.4393116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper investigates the effectiveness of a static neural network for input-output mapping of power electronic circuits. The neural network is a multilayer perceptron (MLP) that is trained to form a mapping between the inputs and outputs of a power electronic circuit. The circuit consists of a full bridge diode rectifier, together with the source inductance and the output filter. Dynamic models have been used for the rectifier diodes. The ultimate objective of the designed neural network is to provide an indication when the performance properties of one or more components in the rectifier circuit have changed. Simulation results are provided that indicate the neural network is capable of mapping the inputs and outputs of the circuit and detect operating conditions that are different from the original condition.
电力电子电路输入输出映射的静态神经网络
本文研究了静态神经网络在电力电子电路输入输出映射中的有效性。神经网络是一个多层感知器(MLP),它被训练成在电力电子电路的输入和输出之间形成映射。该电路由全桥二极管整流器、源电感和输出滤波器组成。对整流二极管采用了动态模型。所设计的神经网络的最终目标是在整流电路中一个或多个元件的性能特性发生变化时提供指示。仿真结果表明,该神经网络能够映射电路的输入和输出,并检测出与原始状态不同的工作状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信