Falling down detection on zebra crossing at night by thermal imager

Ying-Nong Chen, Wen-Yao Tsai, Kuo-Chin Fan, Chi-Hung Chuang
{"title":"Falling down detection on zebra crossing at night by thermal imager","authors":"Ying-Nong Chen, Wen-Yao Tsai, Kuo-Chin Fan, Chi-Hung Chuang","doi":"10.1109/ISPACS.2012.6473473","DOIUrl":null,"url":null,"abstract":"Falling down detection is an important application for surveillance system. In this study, a two-stage falling down detection at night based on optical flow and motion histogram image (MHI) is proposed. Based on the thermal imager, the foreground pedestrian could be perfectly extracted. In the first stage, vertical optical flow feature is used to roughly detect the falling down event, then, in the second stage, vertical optical flow hybrid MHI feature is fed into the Naive Bayes classifier to verify the falling down event. The experimental results show that the detection rate is 98.6%, which demonstrates the effectiveness of the proposed method.","PeriodicalId":158744,"journal":{"name":"2012 International Symposium on Intelligent Signal Processing and Communications Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Symposium on Intelligent Signal Processing and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2012.6473473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Falling down detection is an important application for surveillance system. In this study, a two-stage falling down detection at night based on optical flow and motion histogram image (MHI) is proposed. Based on the thermal imager, the foreground pedestrian could be perfectly extracted. In the first stage, vertical optical flow feature is used to roughly detect the falling down event, then, in the second stage, vertical optical flow hybrid MHI feature is fed into the Naive Bayes classifier to verify the falling down event. The experimental results show that the detection rate is 98.6%, which demonstrates the effectiveness of the proposed method.
热像仪夜间斑马线倒地检测
坠落检测是监控系统的重要应用。本文提出了一种基于光流和运动直方图(MHI)的两级夜间坠落检测方法。基于热像仪,可以很好地提取前景行人。第一阶段利用垂直光流特征对坠落事件进行粗略检测,第二阶段将垂直光流混合MHI特征输入朴素贝叶斯分类器对坠落事件进行验证。实验结果表明,该方法的检出率为98.6%,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信