Polynomial approximation based learning search

Wei Zhang, Shenggui Hong
{"title":"Polynomial approximation based learning search","authors":"Wei Zhang, Shenggui Hong","doi":"10.1109/TENCON.1993.320107","DOIUrl":null,"url":null,"abstract":"In this paper, polynomial approximation method and theory are introduced into the research of learning search of artificial intelligence. By so doing, a learning search algorithm can, after sufficient number of problem-solving, construct a heuristic estimate function h(.) which uniformly approximates to the optimal estimate function h*(.) by arbitrary precision. One of these learning search algorithms, A-B/sub n/, is described and it is shown that, when the number of the previous problem-solving becomes large enough, the worst-case complexity of A-B/sub n/ can be reduced to O(poly(N)), where N is the length of the optimal solution path, poly(N) is a polynomial function of N.<<ETX>>","PeriodicalId":110496,"journal":{"name":"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1993.320107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, polynomial approximation method and theory are introduced into the research of learning search of artificial intelligence. By so doing, a learning search algorithm can, after sufficient number of problem-solving, construct a heuristic estimate function h(.) which uniformly approximates to the optimal estimate function h*(.) by arbitrary precision. One of these learning search algorithms, A-B/sub n/, is described and it is shown that, when the number of the previous problem-solving becomes large enough, the worst-case complexity of A-B/sub n/ can be reduced to O(poly(N)), where N is the length of the optimal solution path, poly(N) is a polynomial function of N.<>
基于多项式近似的学习搜索
本文将多项式逼近方法和理论引入到人工智能学习搜索的研究中。这样,学习搜索算法在求解足够多的问题后,可以构造一个启发式估计函数h(.),该函数以任意精度均匀逼近最优估计函数h*(.)。本文描述了其中一种学习搜索算法a - b /sub - n/,结果表明,当先前问题的数量足够大时,a - b /sub - n/的最坏情况复杂度可降为O(poly(n)),其中n为最优解路径的长度,poly(n)是n的多项式函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信