{"title":"Species Distribution Modeling with Scalability: The Case Study of P-GARP, a Parallel Genetic Algorithm for Rule-Set Production","authors":"F. Santana, C. Pariente, A. Saraiva","doi":"10.1109/IRI.2017.93","DOIUrl":null,"url":null,"abstract":"Species distribution modeling (SDM) calculates a species’ probabilistic distribution by combining Environmental raster layers with species datasets. Such models can help to answer complex questions in Ecology/Biology/Health, e.g., by calculating impacts of climate changes in Biodiversity, or the potential for a disease spread (vectors’ modeling). Machine learning is largely applied in SDM, being the Genetic Algorithm for Rule-set Production (GARP) one of the most reliable solutions. However, GARP’s convergence needs to speedup under certain conditions (high resolution or number of layers), for which this paper proposes P-GARP, a parallel, scalable implementation of GARP. P-GARP was implemented onto a SGI Altix XE 1300 cluster with 2 quad-core processors/node. Preliminary results show an expressive 3.2/node speedup. Premature convergence is not observed in PGARP and its accuracy is very similar to GARP´s. Effective solutions to improve this speedup in even larger scale are proposed, along with a discussion about P-GARP correctness and efficiency.","PeriodicalId":254330,"journal":{"name":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Information Reuse and Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2017.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Species distribution modeling (SDM) calculates a species’ probabilistic distribution by combining Environmental raster layers with species datasets. Such models can help to answer complex questions in Ecology/Biology/Health, e.g., by calculating impacts of climate changes in Biodiversity, or the potential for a disease spread (vectors’ modeling). Machine learning is largely applied in SDM, being the Genetic Algorithm for Rule-set Production (GARP) one of the most reliable solutions. However, GARP’s convergence needs to speedup under certain conditions (high resolution or number of layers), for which this paper proposes P-GARP, a parallel, scalable implementation of GARP. P-GARP was implemented onto a SGI Altix XE 1300 cluster with 2 quad-core processors/node. Preliminary results show an expressive 3.2/node speedup. Premature convergence is not observed in PGARP and its accuracy is very similar to GARP´s. Effective solutions to improve this speedup in even larger scale are proposed, along with a discussion about P-GARP correctness and efficiency.