CrystalBall: A Visual Analytic System for Future Event Discovery and Analysis from Social Media Data

Isaac Cho, Ryan Wesslen, Svitlana Volkova, W. Ribarsky, Wenwen Dou
{"title":"CrystalBall: A Visual Analytic System for Future Event Discovery and Analysis from Social Media Data","authors":"Isaac Cho, Ryan Wesslen, Svitlana Volkova, W. Ribarsky, Wenwen Dou","doi":"10.1109/VAST.2017.8585658","DOIUrl":null,"url":null,"abstract":"Social media data bear valuable insights regarding events that occur around the world. Events are inherently temporal and spatial. Existing visual text analysis systems have focused on detecting and analyzing past and ongoing events. Few have leveraged social media information to look for events that may occur in the future. In this paper, we present an interactive visual analytic system, CrystalBall, that automatically identifies and ranks future events from Twitter streams. CrystalBall integrates new methods to discover events with interactive visualizations that permit sensemaking of the identified future events. Our computational methods integrate seven different measures to identify and characterize future events, leveraging information regarding time, location, social networks, and the informativeness of the messages. A visual interface is tightly coupled with the computational methods to present a concise summary of the possible future events. A novel connection graph and glyphs are designed to visualize the characteristics of the future events. To demonstrate the efficacy of CrystalBall in identifying future events and supporting interactive analysis, we present multiple case studies and validation studies on analyzing events derived from Twitter data.","PeriodicalId":149607,"journal":{"name":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2017.8585658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Social media data bear valuable insights regarding events that occur around the world. Events are inherently temporal and spatial. Existing visual text analysis systems have focused on detecting and analyzing past and ongoing events. Few have leveraged social media information to look for events that may occur in the future. In this paper, we present an interactive visual analytic system, CrystalBall, that automatically identifies and ranks future events from Twitter streams. CrystalBall integrates new methods to discover events with interactive visualizations that permit sensemaking of the identified future events. Our computational methods integrate seven different measures to identify and characterize future events, leveraging information regarding time, location, social networks, and the informativeness of the messages. A visual interface is tightly coupled with the computational methods to present a concise summary of the possible future events. A novel connection graph and glyphs are designed to visualize the characteristics of the future events. To demonstrate the efficacy of CrystalBall in identifying future events and supporting interactive analysis, we present multiple case studies and validation studies on analyzing events derived from Twitter data.
水晶球:一个从社会媒体数据中发现和分析未来事件的可视化分析系统
社交媒体数据提供了有关世界各地发生的事件的宝贵见解。事件本质上是时间和空间的。现有的可视化文本分析系统侧重于检测和分析过去和正在进行的事件。很少有人利用社交媒体信息来寻找未来可能发生的事件。在本文中,我们提出了一个交互式可视化分析系统CrystalBall,它可以自动识别Twitter流中的未来事件并对其进行排名。CrystalBall集成了新的方法来发现事件与交互式可视化,允许识别未来事件的意义。我们的计算方法整合了七种不同的方法来识别和描述未来事件,利用有关时间、地点、社会网络和信息的信息量的信息。可视化界面与计算方法紧密结合,以提供对未来可能事件的简明总结。设计了一种新颖的连接图和符号来可视化未来事件的特征。为了证明CrystalBall在识别未来事件和支持交互式分析方面的功效,我们提出了多个案例研究和验证研究,用于分析来自Twitter数据的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信