Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks

Kyounghoon Kim, Jungki Kim, Joonsang Yu, J. Seo, Jongeun Lee, Kiyoung Choi
{"title":"Dynamic energy-accuracy trade-off using stochastic computing in deep neural networks","authors":"Kyounghoon Kim, Jungki Kim, Joonsang Yu, J. Seo, Jongeun Lee, Kiyoung Choi","doi":"10.1145/2897937.2898011","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient DNN design with stochastic computing. Observing that directly adopting stochastic computing to DNN has some challenges including random error fluctuation, range limitation, and overhead in accumulation, we address these problems by removing near-zero weights, applying weight-scaling, and integrating the activation function with the accumulator. The approach allows an easy implementation of early decision termination with a fixed hardware design by exploiting the progressive precision characteristics of stochastic computing, which was not easy with existing approaches. Experimental results show that our approach outperforms the conventional binary logic in terms of gate area, latency, and power consumption.","PeriodicalId":185271,"journal":{"name":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"137","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897937.2898011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 137

Abstract

This paper presents an efficient DNN design with stochastic computing. Observing that directly adopting stochastic computing to DNN has some challenges including random error fluctuation, range limitation, and overhead in accumulation, we address these problems by removing near-zero weights, applying weight-scaling, and integrating the activation function with the accumulator. The approach allows an easy implementation of early decision termination with a fixed hardware design by exploiting the progressive precision characteristics of stochastic computing, which was not easy with existing approaches. Experimental results show that our approach outperforms the conventional binary logic in terms of gate area, latency, and power consumption.
基于随机计算的深度神经网络动态能量-精度权衡
本文提出了一种基于随机计算的深度神经网络设计方法。观察到直接将随机计算应用于深度神经网络存在一些挑战,包括随机误差波动、范围限制和积累开销,我们通过去除接近零的权重、应用权重缩放以及将激活函数与累加器集成来解决这些问题。该方法利用随机计算的渐进精度特性,在固定的硬件设计下,可以轻松实现早期决策终止,这在现有方法中是不容易的。实验结果表明,我们的方法在栅极面积、延迟和功耗方面优于传统的二进制逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信