Using Actor-Critic Reinforcement Learning for Control and Flight Formation of Quadrotors

Edgar Torres, Lei Xu, Tohid Sardarmehni
{"title":"Using Actor-Critic Reinforcement Learning for Control and Flight Formation of Quadrotors","authors":"Edgar Torres, Lei Xu, Tohid Sardarmehni","doi":"10.1115/imece2022-97224","DOIUrl":null,"url":null,"abstract":"\n This paper introduces a near-optimal controller for the control of quadrotors. A quadrotor is described as a complex, twelve-state system. The paper simplifies the controller by considering it as two levels, the upper-level (kinematics) six-state controller and the lower-level (kinetics) twelve-state controller. An actor-critic optimal controller generates the desired velocities in the upper-level control, and its parameters are tuned by reinforcement learning. The desired velocities are generated using the upper-level controller, which is then used to solve for the lower-level control algebraically. Simulation results are provided to show the effectiveness of the solution.","PeriodicalId":302047,"journal":{"name":"Volume 5: Dynamics, Vibration, and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-97224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a near-optimal controller for the control of quadrotors. A quadrotor is described as a complex, twelve-state system. The paper simplifies the controller by considering it as two levels, the upper-level (kinematics) six-state controller and the lower-level (kinetics) twelve-state controller. An actor-critic optimal controller generates the desired velocities in the upper-level control, and its parameters are tuned by reinforcement learning. The desired velocities are generated using the upper-level controller, which is then used to solve for the lower-level control algebraically. Simulation results are provided to show the effectiveness of the solution.
四旋翼机控制与编队飞行的actor - critical强化学习
本文介绍了一种用于四旋翼机控制的近最优控制器。四旋翼飞行器被描述为一个复杂的十二态系统。本文将控制器简化为两个层次,即上层(运动学)六态控制器和下层(动力学)十二态控制器。一个actor-critic最优控制器在上层控制中产生期望的速度,并通过强化学习对其参数进行调整。期望的速度是由上层控制器产生的,然后用它来求解下层控制的代数。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信