Multi-target Track-Before-Detect using labeled random finite set

F. Papi, B. Vo, Melanie Bocquel, B. Vo
{"title":"Multi-target Track-Before-Detect using labeled random finite set","authors":"F. Papi, B. Vo, Melanie Bocquel, B. Vo","doi":"10.1109/ICCAIS.2013.6720540","DOIUrl":null,"url":null,"abstract":"Multi-target tracking requires the joint estimation of the number of target trajectories and their states from a sequence of observations. In low signal-to-noise ratio (SNR) scenarios, the poor detection probability and large number of false observations can greatly degrade the tracking performance. In this case an approach called Track-Before-Detect (TBD) that operates on the pre-detection signal, is needed. In this paper we present a labeled random finite set solution to the multi-target TBD problem. To the best of our knowledge this is the first provably Bayes optimal approach to multi-target tracking using image data. Simulation results using realistic radar-based TBD scenarios are also presented to demonstrate the capability of the proposed approach.","PeriodicalId":347974,"journal":{"name":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2013.6720540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Multi-target tracking requires the joint estimation of the number of target trajectories and their states from a sequence of observations. In low signal-to-noise ratio (SNR) scenarios, the poor detection probability and large number of false observations can greatly degrade the tracking performance. In this case an approach called Track-Before-Detect (TBD) that operates on the pre-detection signal, is needed. In this paper we present a labeled random finite set solution to the multi-target TBD problem. To the best of our knowledge this is the first provably Bayes optimal approach to multi-target tracking using image data. Simulation results using realistic radar-based TBD scenarios are also presented to demonstrate the capability of the proposed approach.
基于标记随机有限集的多目标检测前跟踪
多目标跟踪需要从一系列观测中对目标轨迹的数量及其状态进行联合估计。在低信噪比情况下,低检测概率和大量的假观测值会大大降低跟踪性能。在这种情况下,需要一种称为跟踪前检测(TBD)的方法,该方法对预检测信号进行操作。本文给出了多目标TBD问题的标记随机有限集解。据我们所知,这是第一个使用图像数据进行多目标跟踪的可证明的贝叶斯最优方法。采用基于雷达的TBD场景的仿真结果也证明了所提出方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信