4H-SiC DMOSFETs for power conversion applications successes and ongoing challenges

Brett Hulla, J. Zhang, M. Das, S. Ryu, C. Jonas, S. Dhar, S. Haney, R. Callanan, J. Richmond
{"title":"4H-SiC DMOSFETs for power conversion applications successes and ongoing challenges","authors":"Brett Hulla, J. Zhang, M. Das, S. Ryu, C. Jonas, S. Dhar, S. Haney, R. Callanan, J. Richmond","doi":"10.1109/DRC.2010.5551909","DOIUrl":null,"url":null,"abstract":"Power devices fabricated in 4H-SiC are poised to significantly impact the field of power electronics. There has been great interest in SiC as a material in which to fabricate power electronic devices for quite some time based on its very promising fundamental materials properties. However, it has been far more recently that the potential of SiC is being appreciated as a result of the recent advances in material quality, fabrication processes and device design. Based on the high critical breakdown electric field, high bandgap and high thermal conductivity of SiC, systems that are specifically designed to take advantage of these characteristics offer superior power density, lower cooling requirements, and prolonged survivability in adverse conditions when compared to systems fabricated with Si power devices.","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Power devices fabricated in 4H-SiC are poised to significantly impact the field of power electronics. There has been great interest in SiC as a material in which to fabricate power electronic devices for quite some time based on its very promising fundamental materials properties. However, it has been far more recently that the potential of SiC is being appreciated as a result of the recent advances in material quality, fabrication processes and device design. Based on the high critical breakdown electric field, high bandgap and high thermal conductivity of SiC, systems that are specifically designed to take advantage of these characteristics offer superior power density, lower cooling requirements, and prolonged survivability in adverse conditions when compared to systems fabricated with Si power devices.
用于功率转换应用的4H-SiC dmosfet的成功和持续的挑战
用4H-SiC制造的功率器件将对电力电子领域产生重大影响。由于碳化硅具有非常有前途的基本材料特性,在相当长的一段时间内,人们对其作为制造电力电子器件的材料产生了极大的兴趣。然而,直到最近,由于材料质量、制造工艺和器件设计的最新进展,SiC的潜力才得到重视。基于SiC的高临界击穿电场、高带隙和高导热性,与用Si功率器件制造的系统相比,专为利用这些特性而设计的系统提供了卓越的功率密度、更低的冷却要求和更长的恶劣条件下的生存能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信