A. Viegas, Debaditya Chatterjee, T. Choudhury, S. Raghavan, N. Bhat
{"title":"Thin film anodized titania nanotubes-based oxygen sensor","authors":"A. Viegas, Debaditya Chatterjee, T. Choudhury, S. Raghavan, N. Bhat","doi":"10.1109/ICEMELEC.2014.7151130","DOIUrl":null,"url":null,"abstract":"Anodized titania, synthesized on oxidized silicon substrate, has been used as oxygen gas sensor. The as-anodized films resulted in a sensitivity of 5756% at 125°C, when exposed to 100% oxygen. The gas-sensing performance of anodized films has been evaluated with post-anodization treatment in de-ionized water and aqueous ammonia solution. The sensitivity increases to 8646% and 16599%, with post-treatment in aqueous ammonia solution and de-ionized water, respectively. This is attributed to increase surface area and activation during the post- anodization treatment. The repeatability of sensor performance has also been evaluated, and it is observed that the de-ionized water treated film is unstable for repeated sensing, possibly due to some structural modifications.","PeriodicalId":186054,"journal":{"name":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMELEC.2014.7151130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Anodized titania, synthesized on oxidized silicon substrate, has been used as oxygen gas sensor. The as-anodized films resulted in a sensitivity of 5756% at 125°C, when exposed to 100% oxygen. The gas-sensing performance of anodized films has been evaluated with post-anodization treatment in de-ionized water and aqueous ammonia solution. The sensitivity increases to 8646% and 16599%, with post-treatment in aqueous ammonia solution and de-ionized water, respectively. This is attributed to increase surface area and activation during the post- anodization treatment. The repeatability of sensor performance has also been evaluated, and it is observed that the de-ionized water treated film is unstable for repeated sensing, possibly due to some structural modifications.