Statistic analysis and predication of crane condition parameters based on SVM

Xiuzhong Xu, Xiong Hu, Shan Jiang
{"title":"Statistic analysis and predication of crane condition parameters based on SVM","authors":"Xiuzhong Xu, Xiong Hu, Shan Jiang","doi":"10.1109/ICAL.2010.5585394","DOIUrl":null,"url":null,"abstract":"Through statistic analysis of vibration and temperature signals of motor on the container crane hoisting mechanism in Waigaoqiao port, the feature vectors with vibration and temperature are obtained. Through data preprocessing and training data, Training models of condition parameters based on support vector machine (SVM) are established. The testing data of condition monitoring parameters can be predicted by these training models. During training the models, the penalty parameter and kernel function of model are optimized by cross validation. The research showed the predicted results of model using vibration and temperature is much better than the results only by vibration signal or temperature modeling.","PeriodicalId":393739,"journal":{"name":"2010 IEEE International Conference on Automation and Logistics","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2010.5585394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Through statistic analysis of vibration and temperature signals of motor on the container crane hoisting mechanism in Waigaoqiao port, the feature vectors with vibration and temperature are obtained. Through data preprocessing and training data, Training models of condition parameters based on support vector machine (SVM) are established. The testing data of condition monitoring parameters can be predicted by these training models. During training the models, the penalty parameter and kernel function of model are optimized by cross validation. The research showed the predicted results of model using vibration and temperature is much better than the results only by vibration signal or temperature modeling.
基于支持向量机的起重机工况参数统计分析与预测
通过对外高桥港集装箱起重机起重机构电机振动和温度信号的统计分析,得到了包含振动和温度的特征向量。通过数据预处理和训练数据,建立了基于支持向量机(SVM)的状态参数训练模型。这些训练模型可以对状态监测参数的测试数据进行预测。在模型训练过程中,通过交叉验证对模型的惩罚参数和核函数进行优化。研究表明,采用振动和温度模型的预测结果比仅采用振动信号或温度模型的预测结果要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信