On the iterative learning control theory for robotic manipulators

P. Bondi, G. Casalino, L. Gambardella
{"title":"On the iterative learning control theory for robotic manipulators","authors":"P. Bondi, G. Casalino, L. Gambardella","doi":"10.1109/56.767","DOIUrl":null,"url":null,"abstract":"An iterative learning technique is applied to robot manipulators, using an inherently nonlinear analysis of the learning procedure. In particularly, a 'high-gain feedback' point of view is utilized to prove the possibility of setting up uniform upper bounds to the trajectory errors occurring at each trial. The subsequent analysis of convergence shows that apart from minor conditions, the existence of a finite (but not necessarily narrow) bound on the trajectory deviations can substantially suffice to guarantee the zeroing of the errors after a sufficient number of trials. This in turn leaves open the possibility of obtained the exact tracking of the desired motion, even in the presence of moderate values assigned to the feedback gains. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"360","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 360

Abstract

An iterative learning technique is applied to robot manipulators, using an inherently nonlinear analysis of the learning procedure. In particularly, a 'high-gain feedback' point of view is utilized to prove the possibility of setting up uniform upper bounds to the trajectory errors occurring at each trial. The subsequent analysis of convergence shows that apart from minor conditions, the existence of a finite (but not necessarily narrow) bound on the trajectory deviations can substantially suffice to guarantee the zeroing of the errors after a sufficient number of trials. This in turn leaves open the possibility of obtained the exact tracking of the desired motion, even in the presence of moderate values assigned to the feedback gains. >
机械臂迭代学习控制理论研究
利用学习过程的固有非线性分析,将迭代学习技术应用于机器人机械臂。特别地,利用“高增益反馈”的观点来证明为每次试验中发生的轨迹误差设置统一上界的可能性。随后的收敛性分析表明,除了次要条件外,轨迹偏差的有限(但不一定是窄的)边界的存在基本上足以保证经过足够次数的试验后误差归零。这反过来又留下了获得所需运动的精确跟踪的可能性,即使在分配给反馈增益的适度值存在的情况下。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信