Gesture recognition from depth images using motion and shape features

Shuxin Qin, Yiping Yang, Yongshi Jiang
{"title":"Gesture recognition from depth images using motion and shape features","authors":"Shuxin Qin, Yiping Yang, Yongshi Jiang","doi":"10.1109/IMSNA.2013.6743244","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective method to recognize 3D gestures from depth images which provide additional body motion and shape features. We project depth images onto three orthogonal planes and calculate the Motion History Image (MHI) of each projection to generate the 3 views MHI (3VMHI). Pyramid Histogram of Oriented Gradients (PHOG) is used to extract the features of the 3VMHI. Then, 3VMHI and PHOG are used together as a combined spacetime descriptor for gesture recognition. We provide a method to extract different gestures from a single video. Consecutive frame difference is employed to perform informative frame selection, which is able to remove uninformative frames. The experimental results on two challenging datasets demonstrate that our approach is effective and efficient.","PeriodicalId":111582,"journal":{"name":"2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSNA.2013.6743244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose an effective method to recognize 3D gestures from depth images which provide additional body motion and shape features. We project depth images onto three orthogonal planes and calculate the Motion History Image (MHI) of each projection to generate the 3 views MHI (3VMHI). Pyramid Histogram of Oriented Gradients (PHOG) is used to extract the features of the 3VMHI. Then, 3VMHI and PHOG are used together as a combined spacetime descriptor for gesture recognition. We provide a method to extract different gestures from a single video. Consecutive frame difference is employed to perform informative frame selection, which is able to remove uninformative frames. The experimental results on two challenging datasets demonstrate that our approach is effective and efficient.
使用运动和形状特征的深度图像的手势识别
本文提出了一种从深度图像中识别三维手势的有效方法,该方法提供了额外的身体运动和形状特征。我们将深度图像投影到三个正交平面上,并计算每个投影的运动历史图像(MHI),生成3视图MHI (3VMHI)。利用定向梯度金字塔直方图(PHOG)提取3VMHI的特征。然后,将3VMHI和PHOG作为组合时空描述符用于手势识别。我们提供了一种从单个视频中提取不同手势的方法。利用连续帧差进行信息帧选择,可以去除非信息帧。在两个具有挑战性的数据集上的实验结果表明,我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信