Optimal joint azimuth-elevation and signal-array response estimation using parallel factor analysis

R. Bro, N. Sidiropoulos, G. Giannakis
{"title":"Optimal joint azimuth-elevation and signal-array response estimation using parallel factor analysis","authors":"R. Bro, N. Sidiropoulos, G. Giannakis","doi":"10.1109/ACSSC.1998.751595","DOIUrl":null,"url":null,"abstract":"We consider deterministic joint azimuth-elevation, signal, and array response estimation, and establish a direct link to parallel factor (PARAFAC) analysis, a tool with roots in linear algebra for multi-way arrays. This link affords a powerful identifiability result, plus the opportunity to tap on and extend the available expertise for fitting the PARAFAC model, to derive a deterministic (least squares) joint estimation algorithm, also applicable to multiple-parameter/multiple-invariance ESPRIT subspace fitting problems. These and other issues are demonstrated in pertinent simulation experiments.","PeriodicalId":393743,"journal":{"name":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1998.751595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We consider deterministic joint azimuth-elevation, signal, and array response estimation, and establish a direct link to parallel factor (PARAFAC) analysis, a tool with roots in linear algebra for multi-way arrays. This link affords a powerful identifiability result, plus the opportunity to tap on and extend the available expertise for fitting the PARAFAC model, to derive a deterministic (least squares) joint estimation algorithm, also applicable to multiple-parameter/multiple-invariance ESPRIT subspace fitting problems. These and other issues are demonstrated in pertinent simulation experiments.
基于并行因子分析的最优联合方位-仰角和信号阵列响应估计
我们考虑了确定性联合方位角-仰角、信号和阵列响应估计,并建立了与并行因子(PARAFAC)分析的直接联系,这是一种基于线性代数的多路阵列分析工具。这个链接提供了一个强大的可识别性结果,加上有机会利用和扩展现有的专业知识来拟合PARAFAC模型,得出一个确定性(最小二乘)联合估计算法,也适用于多参数/多不变ESPRIT子空间拟合问题。这些和其他问题在相关的模拟实验中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信