PESC

Jiadong Sun, Xia Zhou, Wenbo Shen, Yajin Zhou, K. Ren
{"title":"PESC","authors":"Jiadong Sun, Xia Zhou, Wenbo Shen, Yajin Zhou, K. Ren","doi":"10.1145/3374664.3375734","DOIUrl":null,"url":null,"abstract":"Stack canary is the most widely deployed defense technique against stack buffer overflow attacks. However, since its proposition, the design of stack canary has very few improvements during the past 20 years, making it vulnerable to new and sophisticated attacks. For example, the ARM64 Linux kernel is still adopting the same design with StackGuard, using one global canary for the whole kernel. The x86_64 Linux kernel leverages a better design by using a per-task canary for different threads. Unfortunately, both of them are vulnerable to kernel memory leaks. Using the memory leak bugs or hardware side-channel attacks, e.g., Meltdown or Spectre, attackers can easily peek the kernel stack canary value, thus bypassing the protection. To address this issue, we proposed a fine-grained design of the kernel stack canary named PESC, standing for Per-System-Call Canary, which changes the kernel canary value on the system call basis. With PESC, attackers cannot accumulate any knowledge of prior canary across multiple system calls. In other words, PESC is resilient to memory leaks. Our key observation is that before serving a system call, the kernel stack is empty and there are no residual canary values on the stack. As a result, we can directly change the canary value on system call entry without the burden of tracking and updating old canary values on the kernel stack. Moreover, to balance the performance as well as the security, we proposed two PESC designs: one relies on the performance monitor counter register, termed as PESC-PMC, while the other one uses the kernel random number generator, denoted as PESC-RNG. We implemented both PESC-PMC and PESC-RNG on the real-world hardware, using HiKey960 board for ARM64 and Intel i7-7700 for x86_64. The synthetic benchmark and SPEC CPU2006 experimental results show that the performance overhead introduced by PESC-PMC and PESC-RNG on the whole system is less than 1%.","PeriodicalId":171521,"journal":{"name":"Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3374664.3375734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Stack canary is the most widely deployed defense technique against stack buffer overflow attacks. However, since its proposition, the design of stack canary has very few improvements during the past 20 years, making it vulnerable to new and sophisticated attacks. For example, the ARM64 Linux kernel is still adopting the same design with StackGuard, using one global canary for the whole kernel. The x86_64 Linux kernel leverages a better design by using a per-task canary for different threads. Unfortunately, both of them are vulnerable to kernel memory leaks. Using the memory leak bugs or hardware side-channel attacks, e.g., Meltdown or Spectre, attackers can easily peek the kernel stack canary value, thus bypassing the protection. To address this issue, we proposed a fine-grained design of the kernel stack canary named PESC, standing for Per-System-Call Canary, which changes the kernel canary value on the system call basis. With PESC, attackers cannot accumulate any knowledge of prior canary across multiple system calls. In other words, PESC is resilient to memory leaks. Our key observation is that before serving a system call, the kernel stack is empty and there are no residual canary values on the stack. As a result, we can directly change the canary value on system call entry without the burden of tracking and updating old canary values on the kernel stack. Moreover, to balance the performance as well as the security, we proposed two PESC designs: one relies on the performance monitor counter register, termed as PESC-PMC, while the other one uses the kernel random number generator, denoted as PESC-RNG. We implemented both PESC-PMC and PESC-RNG on the real-world hardware, using HiKey960 board for ARM64 and Intel i7-7700 for x86_64. The synthetic benchmark and SPEC CPU2006 experimental results show that the performance overhead introduced by PESC-PMC and PESC-RNG on the whole system is less than 1%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信