{"title":"Photochemistry Governing Bacteriorhodopsin and Bacterial Reaction Center","authors":"Bernadine G Ang","doi":"10.19080/jojs.2018.01.555559","DOIUrl":null,"url":null,"abstract":"Bacteriorhodopsin (bR) is an integral membrane protein found in the purple membrane of the Halobacterium halobium. As a light driven proton pump, bRs capture photons in the order of 500nm-650nm. Existing research found that 300mv of electricity generated per purple membrane [1]. Conversely, bacterial reaction center (bRC) is found in Rhodobacter sphaeroides. It generates 800mv of electricity in total, considering the transfer of 4 protons in the membrane. Multiple interventions to denature and modulate the structure of bR should be considered, including pH, temperature, detergent and wavelength of laser light. Bacteriorhodopsin has been known to function between0C to 45C at a pH of 1-11. It tolerates temperature over 80C in water and up to 140C in dry [2]. Conventionally, laser is utilized to precipitate the photoisomerization of bR, consequently shifting all trans-13 to structure. The chromophore which is covalently attached to Lys216 through a Schiff base is modulated through this method. Bacterial Reaction Center (bRC) is a light driven electron transfer reaction that converts solar energy to chemical energy. bRC are integral membrane structured proteins found in the purple membrane of Rhodobacter sphaeroides. It is composed of 3 protein subunits--L, M and H. It has 3 major co-factors composed of 4bacterio-chlorophylls, 2 bacteriopheophytins and 2 quinones [3]. In this interaction, electron transfer occurs through light ejection of electron that passes through them embrane. Conversion of sunlight to chemical energy simultaneously precipitates. Both bR and bRC from Halobacterium halobium and Rhodobacter sphaeroides respectively generate a considerable worth of electricity that can be used in the industry today. Although bRC emits power in a rather limited merit, future research would determine its potential for catalyzing electrically reliant applications such as optics, instrumentation and therapeutic values. bRC can be utilized for solar energy and drive photovoltaic cells. Its usage is ubiquitous at this point and has generated multitude of photovoltaic and solar energy driven applications. Further research will enhance the efficacy of bRC generated solar cells and related interventions.","PeriodicalId":345283,"journal":{"name":"JOJ Sciences","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOJ Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/jojs.2018.01.555559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Bacteriorhodopsin (bR) is an integral membrane protein found in the purple membrane of the Halobacterium halobium. As a light driven proton pump, bRs capture photons in the order of 500nm-650nm. Existing research found that 300mv of electricity generated per purple membrane [1]. Conversely, bacterial reaction center (bRC) is found in Rhodobacter sphaeroides. It generates 800mv of electricity in total, considering the transfer of 4 protons in the membrane. Multiple interventions to denature and modulate the structure of bR should be considered, including pH, temperature, detergent and wavelength of laser light. Bacteriorhodopsin has been known to function between0C to 45C at a pH of 1-11. It tolerates temperature over 80C in water and up to 140C in dry [2]. Conventionally, laser is utilized to precipitate the photoisomerization of bR, consequently shifting all trans-13 to structure. The chromophore which is covalently attached to Lys216 through a Schiff base is modulated through this method. Bacterial Reaction Center (bRC) is a light driven electron transfer reaction that converts solar energy to chemical energy. bRC are integral membrane structured proteins found in the purple membrane of Rhodobacter sphaeroides. It is composed of 3 protein subunits--L, M and H. It has 3 major co-factors composed of 4bacterio-chlorophylls, 2 bacteriopheophytins and 2 quinones [3]. In this interaction, electron transfer occurs through light ejection of electron that passes through them embrane. Conversion of sunlight to chemical energy simultaneously precipitates. Both bR and bRC from Halobacterium halobium and Rhodobacter sphaeroides respectively generate a considerable worth of electricity that can be used in the industry today. Although bRC emits power in a rather limited merit, future research would determine its potential for catalyzing electrically reliant applications such as optics, instrumentation and therapeutic values. bRC can be utilized for solar energy and drive photovoltaic cells. Its usage is ubiquitous at this point and has generated multitude of photovoltaic and solar energy driven applications. Further research will enhance the efficacy of bRC generated solar cells and related interventions.