Thermal characterization and modeling of ultra-thin silicon chips

M. Alshahed, Zili Yu, H. Rempp, H. Richter, C. Harendt, J. Burghartz
{"title":"Thermal characterization and modeling of ultra-thin silicon chips","authors":"M. Alshahed, Zili Yu, H. Rempp, H. Richter, C. Harendt, J. Burghartz","doi":"10.1109/ESSDERC.2014.6948844","DOIUrl":null,"url":null,"abstract":"Manufacturing ultra-thin chip is an emerging field in semiconductor technology that is driven by 3-D integrated circuits and flexible electronics. Unlike bulk silicon (Si) chips with thickness greater than 400 μm, the thermal management of ultra-thin Si chips with thickness smaller than 20 μm is challenging due to the increased lateral thermal resistance implying stringent cooling requirements. Therefore, a reasonable prediction of temperature gradients in such chips is necessary. In this work, a thermal chip is implemented in an ultra-thin 0.5 μm CMOS technology to be employed in surface steady-state and transient temperature measurement. Test chips are either packaged in a Pin Grid Array (PGA) ceramic package or attached to a flexible polyimide substrate. The experimental results show an on-chip temperature gradient of ~15 °C for a dissipated power of 0.4 W in the case of the PGA package and ~30 °C for the polyimide substrate. The time constants are ~50 s and ~ 1 s for the PGA and the polyimide packages respectively. The measurements are complemented by FEM simulations using ANSYS 14.5 workbench. In addition, a lumped-element thermal circuit model is developed and used for the surface temperature prediction, which is compared to measurement results.","PeriodicalId":262652,"journal":{"name":"2014 44th European Solid State Device Research Conference (ESSDERC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 44th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2014.6948844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Manufacturing ultra-thin chip is an emerging field in semiconductor technology that is driven by 3-D integrated circuits and flexible electronics. Unlike bulk silicon (Si) chips with thickness greater than 400 μm, the thermal management of ultra-thin Si chips with thickness smaller than 20 μm is challenging due to the increased lateral thermal resistance implying stringent cooling requirements. Therefore, a reasonable prediction of temperature gradients in such chips is necessary. In this work, a thermal chip is implemented in an ultra-thin 0.5 μm CMOS technology to be employed in surface steady-state and transient temperature measurement. Test chips are either packaged in a Pin Grid Array (PGA) ceramic package or attached to a flexible polyimide substrate. The experimental results show an on-chip temperature gradient of ~15 °C for a dissipated power of 0.4 W in the case of the PGA package and ~30 °C for the polyimide substrate. The time constants are ~50 s and ~ 1 s for the PGA and the polyimide packages respectively. The measurements are complemented by FEM simulations using ANSYS 14.5 workbench. In addition, a lumped-element thermal circuit model is developed and used for the surface temperature prediction, which is compared to measurement results.
超薄硅片的热表征与建模
在三维集成电路和柔性电子技术的推动下,超薄芯片制造是半导体技术中的一个新兴领域。与厚度大于400 μm的块状硅(Si)芯片不同,厚度小于20 μm的超薄硅芯片的热管理具有挑战性,因为横向热阻增加,意味着严格的冷却要求。因此,有必要对这种芯片的温度梯度进行合理的预测。在这项工作中,采用超薄0.5 μm CMOS技术实现了一种热芯片,用于表面稳态和瞬态温度测量。测试芯片要么封装在引脚网格阵列(PGA)陶瓷封装中,要么连接到柔性聚酰亚胺基板上。实验结果表明,对于耗散功率为0.4 W的PGA封装,片上温度梯度为~15°C,对于聚酰亚胺衬底,温度梯度为~30°C。PGA封装和聚酰亚胺封装的时间常数分别为~50 s和~ 1 s。利用ANSYS 14.5 workbench进行了有限元模拟。此外,建立了集总元热电路模型,并将其用于表面温度预测,并与实测结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信