Stabilize the planar single inverted pendulum based on LQR

Liu Feng, Tang Yong-chuan, Qi Qian
{"title":"Stabilize the planar single inverted pendulum based on LQR","authors":"Liu Feng, Tang Yong-chuan, Qi Qian","doi":"10.1109/ICAL.2011.6024720","DOIUrl":null,"url":null,"abstract":"This paper firstly analyses the physical model of planar single inverted pendulum system, then builds the mathematical model of this system based on Lagrangian mechanics. These characteristics: multi-parameter, less-driven, strong coupling and highly nonlinearity make it difficult to stabilize the planar inverted pendulum system. But nearby the upright equilibrium of this system, the nonlinear mathematical model of the system can be linearized and get decoupled in X-axis and Y-axis. Then two LQR controllers are designed for each linear inverted pendulum in each axis respectively, and they are almost the same. At last, the simulation experiments in MATLAB test and verify the mathematical model is right and the control policy is effective.","PeriodicalId":351518,"journal":{"name":"2011 IEEE International Conference on Automation and Logistics (ICAL)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation and Logistics (ICAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2011.6024720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper firstly analyses the physical model of planar single inverted pendulum system, then builds the mathematical model of this system based on Lagrangian mechanics. These characteristics: multi-parameter, less-driven, strong coupling and highly nonlinearity make it difficult to stabilize the planar inverted pendulum system. But nearby the upright equilibrium of this system, the nonlinear mathematical model of the system can be linearized and get decoupled in X-axis and Y-axis. Then two LQR controllers are designed for each linear inverted pendulum in each axis respectively, and they are almost the same. At last, the simulation experiments in MATLAB test and verify the mathematical model is right and the control policy is effective.
基于LQR的平面单倒立摆稳定
本文首先分析了平面单倒立摆系统的物理模型,然后基于拉格朗日力学建立了该系统的数学模型。平面倒立摆系统具有多参数、少驱动、强耦合和高度非线性等特点,使其难以稳定。但在系统的垂直平衡点附近,系统的非线性数学模型可以线性化,并在x轴和y轴上解耦。然后分别为每个线性倒立摆在每个轴上设计两个LQR控制器,使其几乎相同。最后在MATLAB中进行了仿真实验,验证了数学模型的正确性和控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信