AGV Path Planning in Unknown Environment Using Fuzzy Inference Systems

M. Majdi, M. Deldar, R. Barzamini, J. Jouzdani
{"title":"AGV Path Planning in Unknown Environment Using Fuzzy Inference Systems","authors":"M. Majdi, M. Deldar, R. Barzamini, J. Jouzdani","doi":"10.1109/ICELIE.2006.347213","DOIUrl":null,"url":null,"abstract":"Path planning is one of the most important fields of research in the area of robotics. In this paper, a path planning method for a certain type of wheeled mobile robots called automated guided vehicles (AGVs) is proposed. The proposed model applies fuzzy control techniques to navigate the AGV in an unknown environment to reach a certain destination. In addition, a new method for escaping local minimums, which may be very critical issue faced by an AGV in an unknown environment, is introduced. Simulation results show satisfactory performance of the proposed method","PeriodicalId":345289,"journal":{"name":"2006 1ST IEEE International Conference on E-Learning in Industrial Electronics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1ST IEEE International Conference on E-Learning in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELIE.2006.347213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Path planning is one of the most important fields of research in the area of robotics. In this paper, a path planning method for a certain type of wheeled mobile robots called automated guided vehicles (AGVs) is proposed. The proposed model applies fuzzy control techniques to navigate the AGV in an unknown environment to reach a certain destination. In addition, a new method for escaping local minimums, which may be very critical issue faced by an AGV in an unknown environment, is introduced. Simulation results show satisfactory performance of the proposed method
基于模糊推理系统的未知环境下AGV路径规划
路径规划是机器人领域最重要的研究领域之一。本文针对轮式移动机器人自动导引车(agv)提出了一种路径规划方法。该模型采用模糊控制技术,使AGV在未知环境下到达一定的目的地。此外,针对AGV在未知环境中面临的一个关键问题,提出了一种新的局部最小值的逃避方法。仿真结果表明了该方法的良好性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信