{"title":"An intelligent self-checkout system for smart retail","authors":"Bing-Fei Wu, Wan-Ju Tseng, Yung-Shin Chen, Shih-Jhe Yao, Po-Ju Chang","doi":"10.1109/ICSSE.2016.7551621","DOIUrl":null,"url":null,"abstract":"Most of current self-checkout systems rely on barcodes, RFID tags, or QR codes attached on items to distinguish products. This paper proposes an Intelligent Self-Checkout System (ISCOS) embedded with a single camera to detect multiple products without any labels in real-time performance. In addition, deep learning skill is applied to implement product detection, and data mining techniques construct the image database employed as training dataset. Product information gathered from a number of markets in Taiwan is utilized to make recommendation to customers. The bounding boxes are annotated by background subtraction with a fixed camera to avoid time-consuming process for each image. The contribution of this work is to combine deep learning and data mining approaches to real-time multi-object detection in image-based checkout system.","PeriodicalId":175283,"journal":{"name":"2016 International Conference on System Science and Engineering (ICSSE)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2016.7551621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Most of current self-checkout systems rely on barcodes, RFID tags, or QR codes attached on items to distinguish products. This paper proposes an Intelligent Self-Checkout System (ISCOS) embedded with a single camera to detect multiple products without any labels in real-time performance. In addition, deep learning skill is applied to implement product detection, and data mining techniques construct the image database employed as training dataset. Product information gathered from a number of markets in Taiwan is utilized to make recommendation to customers. The bounding boxes are annotated by background subtraction with a fixed camera to avoid time-consuming process for each image. The contribution of this work is to combine deep learning and data mining approaches to real-time multi-object detection in image-based checkout system.