{"title":"Relatively complete counterexamples for higher-order programs","authors":"Phuc C. Nguyen, David Van Horn","doi":"10.1145/2737924.2737971","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of generating inputs to a higher-order program causing it to error. We first approach the problem in the setting of PCF, a typed, core functional language and contribute the first relatively complete method for constructing counterexamples for PCF programs. The method is relatively complete with respect to a first-order solver over the base types of PCF. In practice, this means an SMT solver can be used for the effective, automated generation of higher-order counterexamples for a large class of programs. We achieve this result by employing a novel form of symbolic execution for higher-order programs. The remarkable aspect of this symbolic execution is that even though symbolic higher-order inputs and values are considered, the path condition remains a first-order formula. Our handling of symbolic function application enables the reconstruction of higher-order counterexamples from this first-order formula. After establishing our main theoretical results, we sketch how to apply the approach to untyped, higher-order, stateful languages with first-class contracts and show how counterexample generation can be used to detect contract violations in this setting. To validate our approach, we implement a tool generating counterexamples for erroneous modules written in Racket.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
In this paper, we study the problem of generating inputs to a higher-order program causing it to error. We first approach the problem in the setting of PCF, a typed, core functional language and contribute the first relatively complete method for constructing counterexamples for PCF programs. The method is relatively complete with respect to a first-order solver over the base types of PCF. In practice, this means an SMT solver can be used for the effective, automated generation of higher-order counterexamples for a large class of programs. We achieve this result by employing a novel form of symbolic execution for higher-order programs. The remarkable aspect of this symbolic execution is that even though symbolic higher-order inputs and values are considered, the path condition remains a first-order formula. Our handling of symbolic function application enables the reconstruction of higher-order counterexamples from this first-order formula. After establishing our main theoretical results, we sketch how to apply the approach to untyped, higher-order, stateful languages with first-class contracts and show how counterexample generation can be used to detect contract violations in this setting. To validate our approach, we implement a tool generating counterexamples for erroneous modules written in Racket.