Theoretical Derivations of Min-Max Information Clustering Algorithm

Chi Zhang, Xulei Yang, G. Zhao, J. Wan
{"title":"Theoretical Derivations of Min-Max Information Clustering Algorithm","authors":"Chi Zhang, Xulei Yang, G. Zhao, J. Wan","doi":"10.1109/ICICIS.2011.38","DOIUrl":null,"url":null,"abstract":"The min-max information (MMI) clustering algorithm was proposed in [8] for robust detection and separation of spherical shells. In current paper, we make efforts to revisit the proposed MMI algorithm theoretically and practically. Firstly, we present the theoretical derivations of the MMI clustering algorithm, i.e., the detailed derivations of the minimization and maximization optimization of the mutual information. Secondly, several insights on the selection of the pruning parameter ¸ are also discussed in this paper.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The min-max information (MMI) clustering algorithm was proposed in [8] for robust detection and separation of spherical shells. In current paper, we make efforts to revisit the proposed MMI algorithm theoretically and practically. Firstly, we present the theoretical derivations of the MMI clustering algorithm, i.e., the detailed derivations of the minimization and maximization optimization of the mutual information. Secondly, several insights on the selection of the pruning parameter ¸ are also discussed in this paper.
最小-最大信息聚类算法的理论推导
[8]提出了最小-最大信息(min-max information, MMI)聚类算法,用于球壳的鲁棒检测和分离。在本文中,我们试图从理论上和实践上重新审视所提出的MMI算法。首先,我们给出了MMI聚类算法的理论推导,即互信息的最小化和最大化优化的详细推导。其次,本文还讨论了对剪枝参数选择的几点见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信