Voltage buffer compensation using Flipped Voltage Follower in a two-stage CMOS op-amp

S. Pakala, M. Manda, Punith R. Surkanti, A. Garimella, P. Furth
{"title":"Voltage buffer compensation using Flipped Voltage Follower in a two-stage CMOS op-amp","authors":"S. Pakala, M. Manda, Punith R. Surkanti, A. Garimella, P. Furth","doi":"10.1109/MWSCAS.2015.7282199","DOIUrl":null,"url":null,"abstract":"In Miller and current buffer compensation techniques, the compensation capacitor often loads the output node. If a voltage buffer is used in feedback, the compensation capacitor obviates the loading on the output node. In this paper, we introduce an implementation of a voltage buffer compensation using a Flipped Voltage Follower (FVF) for stabilizing a two-stage CMOS op-amp. The op-amps are implemented in a 180-nm CMOS process with a power supply of 1.8V while operating with a quiescent current of 110μA. Results indicate that the proposed voltage buffer compensation using FVF improves the Unity Gain Frequency from 5.5MHz to 12.2MHz compared to Miller compensation. Also, the proposed technique enhances the transient response while lowering the compensation capacitance by 47% and 17.7% compared to Miller and common-drain compensation topologies. Utilization of FVF or its variants as a voltage buffer in a feedback compensation network has wide potential applications in the analog design space.","PeriodicalId":216613,"journal":{"name":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2015.7282199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In Miller and current buffer compensation techniques, the compensation capacitor often loads the output node. If a voltage buffer is used in feedback, the compensation capacitor obviates the loading on the output node. In this paper, we introduce an implementation of a voltage buffer compensation using a Flipped Voltage Follower (FVF) for stabilizing a two-stage CMOS op-amp. The op-amps are implemented in a 180-nm CMOS process with a power supply of 1.8V while operating with a quiescent current of 110μA. Results indicate that the proposed voltage buffer compensation using FVF improves the Unity Gain Frequency from 5.5MHz to 12.2MHz compared to Miller compensation. Also, the proposed technique enhances the transient response while lowering the compensation capacitance by 47% and 17.7% compared to Miller and common-drain compensation topologies. Utilization of FVF or its variants as a voltage buffer in a feedback compensation network has wide potential applications in the analog design space.
在两级CMOS运算放大器中使用翻转电压跟随器进行电压缓冲补偿
在米勒和电流缓冲补偿技术中,补偿电容通常负载在输出节点上。如果在反馈中使用电压缓冲器,则补偿电容器消除了输出节点上的负载。在本文中,我们介绍了一种使用翻转电压跟随器(FVF)来稳定两级CMOS运算放大器的电压缓冲补偿的实现。运算放大器采用180nm CMOS工艺,电源为1.8V,工作静态电流为110μA。结果表明,与米勒补偿相比,采用FVF的电压缓冲补偿将单位增益频率从5.5MHz提高到12.2MHz。此外,与米勒和共漏补偿拓扑相比,该技术提高了瞬态响应,同时降低了47%和17.7%的补偿电容。利用FVF或其变体作为反馈补偿网络中的电压缓冲器在模拟设计领域具有广泛的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信