Prototyping a Biologically Plausible Neuron Model on a Heterogeneous CPU-FPGA Board

Kaleb Alfaro-Badilla, A. Chacón-Rodríguez, Georgios Smaragdos, C. Strydis, Andrés Arroyo-Romero, Javier Espinoza-González, C. Salazar-García
{"title":"Prototyping a Biologically Plausible Neuron Model on a Heterogeneous CPU-FPGA Board","authors":"Kaleb Alfaro-Badilla, A. Chacón-Rodríguez, Georgios Smaragdos, C. Strydis, Andrés Arroyo-Romero, Javier Espinoza-González, C. Salazar-García","doi":"10.1109/LASCAS.2019.8667538","DOIUrl":null,"url":null,"abstract":"A heterogeneous hardware-software system implemented on an Avnet ZedBoard Zynq SoC platform, is proposed for the computation of an extended Hodgkin Huxley (eHH), biologically plausible neural model. SoC’s ARM A9 is in charge of handling execution of a single neuron as defined in the eHH model, each with a O(N) computational complexity, while the computation of the gap-junctions interactions for each cell is offloaded on the SoC’s FPGA, cutting its O(N2) complexity by exploiting parallel-computing hardware techniques. The proposed hw-sw solution allows for speed-ups of about 18 times visa-vis à vectorized software implementation on the SoC’s cores, and is comparable to the speed of the same model optimized for a 64-bit Intel Quad Core i7, at 3.9GHz.","PeriodicalId":142430,"journal":{"name":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2019.8667538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A heterogeneous hardware-software system implemented on an Avnet ZedBoard Zynq SoC platform, is proposed for the computation of an extended Hodgkin Huxley (eHH), biologically plausible neural model. SoC’s ARM A9 is in charge of handling execution of a single neuron as defined in the eHH model, each with a O(N) computational complexity, while the computation of the gap-junctions interactions for each cell is offloaded on the SoC’s FPGA, cutting its O(N2) complexity by exploiting parallel-computing hardware techniques. The proposed hw-sw solution allows for speed-ups of about 18 times visa-vis à vectorized software implementation on the SoC’s cores, and is comparable to the speed of the same model optimized for a 64-bit Intel Quad Core i7, at 3.9GHz.
在异构CPU-FPGA板上建立生物学上可信的神经元模型
提出了一种基于安富利ZedBoard Zynq SoC平台的异构硬件软件系统,用于计算扩展的霍奇金赫克斯利(eHH)生物学似是而非的神经模型。SoC的ARM A9负责处理eHH模型中定义的单个神经元的执行,每个神经元的计算复杂度为0 (N),而每个细胞的间隙连接相互作用的计算则在SoC的FPGA上卸载,通过利用并行计算硬件技术降低了其O(N2)的复杂度。提出的hw-sw解决方案允许在SoC核心上实现大约18倍的加速,并且可以与针对64位英特尔四酷睿i7优化的相同型号的速度相媲美,速度为3.9GHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信