Early Interference Detection in HFSWR Input Channel using Convolutional Neural Network

Nikola Stojkovic, Kristina Matović, Snezana Puzović, G. Kvascev
{"title":"Early Interference Detection in HFSWR Input Channel using Convolutional Neural Network","authors":"Nikola Stojkovic, Kristina Matović, Snezana Puzović, G. Kvascev","doi":"10.1109/TELFOR56187.2022.9983664","DOIUrl":null,"url":null,"abstract":"Early detection of ionospheric interference is crucial for continuous monitoring of remote sea areas of exclusive economic zone (EEZ) using high-frequency over the horizon radar (HF-OTHR). In this paper, approach with convolutional neural networks and transfer learning is proposed for detection of the regions affected with ionospheric and other types of interference instead of conventional spectrum analysis. Early detection of interference that is frequency dependent may lead to changing the operating frequency of radar. Adopted approach provided very good results.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early detection of ionospheric interference is crucial for continuous monitoring of remote sea areas of exclusive economic zone (EEZ) using high-frequency over the horizon radar (HF-OTHR). In this paper, approach with convolutional neural networks and transfer learning is proposed for detection of the regions affected with ionospheric and other types of interference instead of conventional spectrum analysis. Early detection of interference that is frequency dependent may lead to changing the operating frequency of radar. Adopted approach provided very good results.
基于卷积神经网络的HFSWR输入通道早期干扰检测
利用高频地平雷达(HF-OTHR)对专属经济区(EEZ)偏远海域进行连续监测,电离层干扰的早期检测至关重要。本文提出了一种基于卷积神经网络和迁移学习的方法来检测受电离层和其他类型干扰的区域,而不是传统的频谱分析。对频率相关干扰的早期发现可能导致雷达工作频率的改变。采用的方法取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信