Turbo decoding of hidden Markov sources with unknown parameters

J. Garcia-Frías, J. Villasenor
{"title":"Turbo decoding of hidden Markov sources with unknown parameters","authors":"J. Garcia-Frías, J. Villasenor","doi":"10.1109/DCC.1998.672143","DOIUrl":null,"url":null,"abstract":"We describe techniques for joint source-channel coding of hidden Markov sources using a modified turbo decoding algorithm. This avoids the need to perform any explicit source coding prior to transmission, and instead allows the decoder to utilize the a priori structure due to the hidden Markov source. In addition, we present methods that allow the decoder to estimate the parameters of the Markov model. In combination, these techniques allow the decoder to identify, estimate, and exploit the source structure. The estimation does not degrade the performance of the system, i.e. the joint estimation/decoding allows convergence at the same noise levels as a system in which the decoder has perfect a priori knowledge of the source parameters.","PeriodicalId":191890,"journal":{"name":"Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1998.672143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We describe techniques for joint source-channel coding of hidden Markov sources using a modified turbo decoding algorithm. This avoids the need to perform any explicit source coding prior to transmission, and instead allows the decoder to utilize the a priori structure due to the hidden Markov source. In addition, we present methods that allow the decoder to estimate the parameters of the Markov model. In combination, these techniques allow the decoder to identify, estimate, and exploit the source structure. The estimation does not degrade the performance of the system, i.e. the joint estimation/decoding allows convergence at the same noise levels as a system in which the decoder has perfect a priori knowledge of the source parameters.
具有未知参数的隐藏马尔可夫源的Turbo解码
我们描述了使用改进的turbo解码算法对隐马尔可夫源进行联合信源信道编码的技术。这避免了在传输之前执行任何显式源编码的需要,而是允许解码器利用由于隐藏马尔可夫源的先验结构。此外,我们还提出了允许解码器估计马尔可夫模型参数的方法。结合起来,这些技术允许解码器识别、估计和利用源结构。估计不会降低系统的性能,即联合估计/解码允许在与解码器对源参数具有完美先验知识的系统相同的噪声水平下收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信