Oepomo's algorithm for computing eigenvalue in system engineering

T. Oepomo
{"title":"Oepomo's algorithm for computing eigenvalue in system engineering","authors":"T. Oepomo","doi":"10.1109/INDS.2011.6024806","DOIUrl":null,"url":null,"abstract":"Small signal stability is the ability of a system to maintain stability when subjected to small disturbances. Small signal analysis gives valuable data about the dynamic properties of the system and helps in its design, operation, and control. Time domain simulation and eigenvalue analysis are the two main ways to study system stability. Eigenvalue analysis are widely utilized to perform small signal stability analysis. The dynamic property of a system in response to small perturbations can be predicted by computing the eigenvalues and eigenvectors of the system matrix. The location of the eigenvalues can be used to study the system's performance. In addition eigenvectors can be used to predict the relative participation of the respective states in the corresponding disturbance modes. This paper described a new method and algorithm for the numerical solution of eigenvalues with the largest real part of essentially positive matrices. The method is based on a numerical implementation of Collatz's eigenvalue inclusion theorem for non-negative irreducible matrices. Finally, a numerical example is given to show the speed of convergence of the new algorithm.","PeriodicalId":117809,"journal":{"name":"Proceedings of the Joint INDS'11 & ISTET'11","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint INDS'11 & ISTET'11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDS.2011.6024806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Small signal stability is the ability of a system to maintain stability when subjected to small disturbances. Small signal analysis gives valuable data about the dynamic properties of the system and helps in its design, operation, and control. Time domain simulation and eigenvalue analysis are the two main ways to study system stability. Eigenvalue analysis are widely utilized to perform small signal stability analysis. The dynamic property of a system in response to small perturbations can be predicted by computing the eigenvalues and eigenvectors of the system matrix. The location of the eigenvalues can be used to study the system's performance. In addition eigenvectors can be used to predict the relative participation of the respective states in the corresponding disturbance modes. This paper described a new method and algorithm for the numerical solution of eigenvalues with the largest real part of essentially positive matrices. The method is based on a numerical implementation of Collatz's eigenvalue inclusion theorem for non-negative irreducible matrices. Finally, a numerical example is given to show the speed of convergence of the new algorithm.
系统工程中特征值计算的Oepomo算法
小信号稳定性是系统在受到小扰动时保持稳定的能力。小信号分析提供了有关系统动态特性的有价值的数据,并有助于其设计,操作和控制。时域仿真和特征值分析是研究系统稳定性的两种主要方法。特征值分析被广泛应用于小信号稳定性分析。系统响应小扰动的动态特性可以通过计算系统矩阵的特征值和特征向量来预测。特征值的位置可以用来研究系统的性能。此外,特征向量可以用来预测在相应的扰动模式中各自状态的相对参与。本文描述了本质正矩阵的最大实部特征值数值解的一种新方法和算法。该方法基于非负不可约矩阵的Collatz特征值包含定理的数值实现。最后给出了一个数值算例,说明了新算法的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信