Data Dreaming for Object Detection: Learning Object-Centric State Representations for Visual Imitation

Maximilian Sieb, Katerina Fragkiadaki
{"title":"Data Dreaming for Object Detection: Learning Object-Centric State Representations for Visual Imitation","authors":"Maximilian Sieb, Katerina Fragkiadaki","doi":"10.1109/HUMANOIDS.2018.8625007","DOIUrl":null,"url":null,"abstract":"We present a visual imitation learning method that enables robots to imitate demonstrated skills by learning a perceptual reward function based on object-centric feature representations. Our method uses the background configuration of the scene to compute object masks for the objects present. The robotic agent then trains a detector for the relevant objects in the scene via a process we call data dreaming, generating a synthetic dataset of images of various object occlusion configurations using only a small amount of background-subtracted ground truth images. We use the output of the object detector to learn an object-centric visual feature representation. We show that the resulting factorized feature representation comprised of per-object appearance features and cross-object relative locations enables efficient real world reinforcement learning that can teach a robot a policy based on a single demonstration after few minutes of training.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8625007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a visual imitation learning method that enables robots to imitate demonstrated skills by learning a perceptual reward function based on object-centric feature representations. Our method uses the background configuration of the scene to compute object masks for the objects present. The robotic agent then trains a detector for the relevant objects in the scene via a process we call data dreaming, generating a synthetic dataset of images of various object occlusion configurations using only a small amount of background-subtracted ground truth images. We use the output of the object detector to learn an object-centric visual feature representation. We show that the resulting factorized feature representation comprised of per-object appearance features and cross-object relative locations enables efficient real world reinforcement learning that can teach a robot a policy based on a single demonstration after few minutes of training.
目标检测的数据梦:学习视觉模仿的以对象为中心的状态表示
我们提出了一种视觉模仿学习方法,使机器人能够通过学习基于以对象为中心的特征表示的感知奖励函数来模仿演示技能。我们的方法使用场景的背景配置来计算对象的遮罩。然后,机器人代理通过我们称之为数据梦的过程来训练场景中相关物体的检测器,仅使用少量减去背景的真实图像生成各种物体遮挡配置图像的合成数据集。我们使用对象检测器的输出来学习以对象为中心的视觉特征表示。我们表明,由此产生的由每个对象的外观特征和跨对象的相对位置组成的分解特征表示实现了有效的现实世界强化学习,可以在几分钟的训练后基于单个演示教机器人策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信