Enhancing the search ability of differential evolutionary through partial intermediate recombination

Yu Xie, Qinglong Wang, Jian Ding, F. Meng, Shanhong Li, Chunxia Zhao
{"title":"Enhancing the search ability of differential evolutionary through partial intermediate recombination","authors":"Yu Xie, Qinglong Wang, Jian Ding, F. Meng, Shanhong Li, Chunxia Zhao","doi":"10.1109/YAC.2017.7967598","DOIUrl":null,"url":null,"abstract":"Differential Evolution (DE) is a simple yet efficient stochastic algorithm for solving real world problems. Binomial crossover and exponential crossover are two commonly used crossover operators in current popular DE. It is noteworthy that these two operators can only generate a vertex of a hypercube defined by the mutant and target vectors. In this paper, using intermediate recombination to generate an offspring within the hypercube is proposed, named Intermediate Recombination Differential Evolution (IRXDE). In this method, intermediate recombination can make a systematic search in a hypercube defined by the parent solutions. The proposed strategy has been evaluated on a test-suite of 20 benchmark functions. The results of the experiments indicate that IRXDE is competitive with respect to some other DE strategies.","PeriodicalId":232358,"journal":{"name":"2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2017.7967598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Differential Evolution (DE) is a simple yet efficient stochastic algorithm for solving real world problems. Binomial crossover and exponential crossover are two commonly used crossover operators in current popular DE. It is noteworthy that these two operators can only generate a vertex of a hypercube defined by the mutant and target vectors. In this paper, using intermediate recombination to generate an offspring within the hypercube is proposed, named Intermediate Recombination Differential Evolution (IRXDE). In this method, intermediate recombination can make a systematic search in a hypercube defined by the parent solutions. The proposed strategy has been evaluated on a test-suite of 20 benchmark functions. The results of the experiments indicate that IRXDE is competitive with respect to some other DE strategies.
通过部分中间重组增强差分进化的搜索能力
差分进化(DE)是一种简单而有效的随机算法,用于解决现实世界的问题。二项交叉和指数交叉是目前流行的两种交叉算子,值得注意的是,这两种算子只能生成由突变体和目标向量定义的超立方体的一个顶点。本文提出了利用中间重组在超立方体内产生一个子代,称为中间重组差分进化(IRXDE)。在该方法中,中间重组可以在父解定义的超立方体中进行系统搜索。所提出的策略已经在一个包含20个基准函数的测试套件上进行了评估。实验结果表明,相对于其他一些DE策略,IRXDE具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信