Cognitive computing with spin-based neural networks

M. Sharad, C. Augustine, G. Panagopoulos, K. Roy
{"title":"Cognitive computing with spin-based neural networks","authors":"M. Sharad, C. Augustine, G. Panagopoulos, K. Roy","doi":"10.1145/2228360.2228594","DOIUrl":null,"url":null,"abstract":"We model a step transfer function neuron with lateral spin valve (LSV) and propose its application in low power neural network hardware. The computational task in such a network is performed by nano-magnets, metal channels and programmable conductive elements, that constitute the neuron-synapse units and operate at a terminal voltage of ~20 mV. CMOS transistors provide peripheral support in the form of clocking, power gating and inter-neuron signaling. Simulations for cognitive as well as Boolean computation applications show more than 94% improvement in power consumption as compared to a conventional CMOS design at the same technology node.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We model a step transfer function neuron with lateral spin valve (LSV) and propose its application in low power neural network hardware. The computational task in such a network is performed by nano-magnets, metal channels and programmable conductive elements, that constitute the neuron-synapse units and operate at a terminal voltage of ~20 mV. CMOS transistors provide peripheral support in the form of clocking, power gating and inter-neuron signaling. Simulations for cognitive as well as Boolean computation applications show more than 94% improvement in power consumption as compared to a conventional CMOS design at the same technology node.
基于自旋的神经网络的认知计算
采用横向自旋阀(LSV)对阶跃传递函数神经元进行建模,并提出了其在低功耗神经网络硬件中的应用。在这种网络中,计算任务由纳米磁铁、金属通道和可编程导电元件完成,它们构成神经元-突触单元,并在~ 20mv的终端电压下工作。CMOS晶体管以时钟、功率门控和神经元间信号的形式提供外围支持。认知和布尔计算应用的模拟显示,在相同的技术节点上,与传统CMOS设计相比,功耗提高了94%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信