A Novel End-to-End Visual Odometry Framework Based on Deep Neural Network

Yinan Wang, Rongchuan Cao, Yingzhou Guan, Xiaoli Zhang
{"title":"A Novel End-to-End Visual Odometry Framework Based on Deep Neural Network","authors":"Yinan Wang, Rongchuan Cao, Yingzhou Guan, Xiaoli Zhang","doi":"10.1109/ICCEAI55464.2022.00115","DOIUrl":null,"url":null,"abstract":"Most of the current visual odometry (VO) methods are designed based on a set of standard procedures, including camera calibration, feature extraction, feature matching (or tracking), motion estimation, local optimization, etc. Though some of these methods excel in accuracy and robustness, they usually require careful design and specific fine-tuning to ensure performance in different scenarios. Also, recovering the absolute scale of the monocular VO usually requires some prior knowledge. In this paper, we propose an end-to-end framework based on U-Net and deep recurrent neural networks (RNNs) for training and deployment, which directly estimates poses from a sequence of raw RGB images without using any modules of the conventional VO system and thus without fine-tuning the parameters of the VO system. Also, no prior knowledge of the scene is necessary in our method. To solve the problem that current deep learning methods only predict poses between frames, we first use U-Net to automatically learn effective feature representations for VO, and then utilize RNN to implicitly model sequence dynamics and relationships. This method makes full use of the context information of sequence frames to achieve accurate and robust VO localization. Experimental results show the superiority of our method compared with several widely used VO methods.","PeriodicalId":414181,"journal":{"name":"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEAI55464.2022.00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the current visual odometry (VO) methods are designed based on a set of standard procedures, including camera calibration, feature extraction, feature matching (or tracking), motion estimation, local optimization, etc. Though some of these methods excel in accuracy and robustness, they usually require careful design and specific fine-tuning to ensure performance in different scenarios. Also, recovering the absolute scale of the monocular VO usually requires some prior knowledge. In this paper, we propose an end-to-end framework based on U-Net and deep recurrent neural networks (RNNs) for training and deployment, which directly estimates poses from a sequence of raw RGB images without using any modules of the conventional VO system and thus without fine-tuning the parameters of the VO system. Also, no prior knowledge of the scene is necessary in our method. To solve the problem that current deep learning methods only predict poses between frames, we first use U-Net to automatically learn effective feature representations for VO, and then utilize RNN to implicitly model sequence dynamics and relationships. This method makes full use of the context information of sequence frames to achieve accurate and robust VO localization. Experimental results show the superiority of our method compared with several widely used VO methods.
一种基于深度神经网络的端到端视觉里程计框架
目前大多数视觉里程计(VO)方法都是基于一套标准程序设计的,包括摄像机校准、特征提取、特征匹配(或跟踪)、运动估计、局部优化等。尽管其中一些方法在准确性和健壮性方面表现出色,但它们通常需要仔细设计和特定的微调,以确保在不同场景下的性能。此外,恢复单目VO的绝对尺度通常需要一定的先验知识。在本文中,我们提出了一个基于U-Net和深度递归神经网络(rnn)的端到端框架,用于训练和部署,该框架直接从原始RGB图像序列中估计姿态,而不使用传统VO系统的任何模块,因此不需要微调VO系统的参数。此外,在我们的方法中不需要预先了解场景。为了解决当前深度学习方法只能预测帧间姿态的问题,我们首先使用U-Net自动学习VO的有效特征表示,然后利用RNN隐式建模序列动态和关系。该方法充分利用了序列帧的上下文信息,实现了精确鲁棒的VO定位。实验结果表明,与几种常用的VO方法相比,该方法具有一定的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信