Neuro-Fuzzy Traffic Signal Control in Urban Traffic Junction

A. Nae, I. Dumitrache
{"title":"Neuro-Fuzzy Traffic Signal Control in Urban Traffic Junction","authors":"A. Nae, I. Dumitrache","doi":"10.1109/CSCS.2019.00114","DOIUrl":null,"url":null,"abstract":"In our neuro-fuzzy controller, the parameters of the fuzzy membership functions are adjusted using a neural network. The neural learning algorithm may then be considered as reinforcement learning. However, the major difficulty for this neuro-fuzzy system under consideration is such that the most usual neural learning algorithms cannot be used. A specific learning algorithm is proposed to be used both for constant traffic volumes and also for changing volumes. Starting from the initial membership functions, the learning algorithm modifies the parameters of the membership functions in different ways at different but constant traffic volumes. The membership functions after the proposed learning algorithm produce smaller delays than the initial membership functions. An additional contribution is for specific changes in the rule base of the fuzzy traffic signal controller in order to reduce delays in various traffic volumes conditions in a test/reference traffic junction.","PeriodicalId":352411,"journal":{"name":"2019 22nd International Conference on Control Systems and Computer Science (CSCS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Conference on Control Systems and Computer Science (CSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCS.2019.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In our neuro-fuzzy controller, the parameters of the fuzzy membership functions are adjusted using a neural network. The neural learning algorithm may then be considered as reinforcement learning. However, the major difficulty for this neuro-fuzzy system under consideration is such that the most usual neural learning algorithms cannot be used. A specific learning algorithm is proposed to be used both for constant traffic volumes and also for changing volumes. Starting from the initial membership functions, the learning algorithm modifies the parameters of the membership functions in different ways at different but constant traffic volumes. The membership functions after the proposed learning algorithm produce smaller delays than the initial membership functions. An additional contribution is for specific changes in the rule base of the fuzzy traffic signal controller in order to reduce delays in various traffic volumes conditions in a test/reference traffic junction.
城市交通路口的神经模糊交通信号控制
在神经模糊控制器中,模糊隶属函数的参数采用神经网络进行调节。神经学习算法可以被认为是强化学习。然而,考虑到这个神经模糊系统的主要困难是,最常见的神经学习算法不能使用。提出了一种既适用于交通量不变又适用于交通量变化的学习算法。该学习算法从初始隶属度函数出发,在不同且不变的流量条件下,对隶属度函数的参数进行不同方式的修改。该学习算法后的隶属度函数比初始隶属度函数产生更小的延迟。另一个贡献是对模糊交通信号控制器的规则库进行特定的更改,以减少测试/参考交通路口各种交通量条件下的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信