{"title":"Texture and steerability based image authentication","authors":"S. Babu, C. Rao","doi":"10.1109/ICIINFS.2016.8262925","DOIUrl":null,"url":null,"abstract":"Copy-Move Forgery Detection (CMFD) method is useful for identifying copy and pasted portions in an image. CMFD has demand in forensic investigation, legal evidence and in many other fields. In this paper, the gists of different newly arrived methodologies in current literature are discussed. Some existing methodologies can be able to localize the forged region and some are not. An efficient method for localization of copy move forgery is proposed in this work for identifying forgery. In the proposed methodology, CMFD is achieved by giving suspected image to Steerable Pyramid Transform (SPT), Local Binary Pattern (LBP) is applied on each oriented subband obtained from SPT to extract feature set, then it is used to trained Support Vector Machine (SVM) to classify images into forged or not. Then localization process is carried out on forged images. Results of proposed methodology are showing robustness even though the forged image has undergone some post processing attacks viz., rotation, flip, JPEG compression.","PeriodicalId":234609,"journal":{"name":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2016.8262925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Copy-Move Forgery Detection (CMFD) method is useful for identifying copy and pasted portions in an image. CMFD has demand in forensic investigation, legal evidence and in many other fields. In this paper, the gists of different newly arrived methodologies in current literature are discussed. Some existing methodologies can be able to localize the forged region and some are not. An efficient method for localization of copy move forgery is proposed in this work for identifying forgery. In the proposed methodology, CMFD is achieved by giving suspected image to Steerable Pyramid Transform (SPT), Local Binary Pattern (LBP) is applied on each oriented subband obtained from SPT to extract feature set, then it is used to trained Support Vector Machine (SVM) to classify images into forged or not. Then localization process is carried out on forged images. Results of proposed methodology are showing robustness even though the forged image has undergone some post processing attacks viz., rotation, flip, JPEG compression.