Neural network adaptive control of high-precision flight simulator: Theory and experiments

Hu Hongjie, Zhang Ping, Lidija Dedi
{"title":"Neural network adaptive control of high-precision flight simulator: Theory and experiments","authors":"Hu Hongjie, Zhang Ping, Lidija Dedi","doi":"10.1109/ICINFA.2009.5205094","DOIUrl":null,"url":null,"abstract":"This paper developed a control scheme of neural network based on feedforward and PD(proportional and derivative) control for high-precision flight simulator. A radial basis-function neural network (RBFNN) controller was used to learn and to compensate the unknown model dynamics, parameter variation and disturbance of the system on-line. The iterative algorithm of RBFNN parameters is got by Lyapunov stability theory. The effectiveness of the proposed control scheme is evaluated by simulation results and a real-time flight simulator system experiment. It is found that the proposed scheme can reduce the plant's sensitivity to parameter variation and disturbance and high precision performance of flight simulator can be obtained.","PeriodicalId":223425,"journal":{"name":"2009 International Conference on Information and Automation","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2009.5205094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper developed a control scheme of neural network based on feedforward and PD(proportional and derivative) control for high-precision flight simulator. A radial basis-function neural network (RBFNN) controller was used to learn and to compensate the unknown model dynamics, parameter variation and disturbance of the system on-line. The iterative algorithm of RBFNN parameters is got by Lyapunov stability theory. The effectiveness of the proposed control scheme is evaluated by simulation results and a real-time flight simulator system experiment. It is found that the proposed scheme can reduce the plant's sensitivity to parameter variation and disturbance and high precision performance of flight simulator can be obtained.
高精度飞行模拟器的神经网络自适应控制:理论与实验
针对高精度飞行模拟器,提出了一种基于前馈和PD(比例导数)控制的神经网络控制方案。采用径向基函数神经网络(RBFNN)控制器在线学习和补偿系统的未知模型动力学、参数变化和扰动。利用李雅普诺夫稳定性理论,给出了RBFNN参数的迭代算法。仿真结果和实时飞行模拟器系统实验验证了所提控制方案的有效性。实验结果表明,该方案可以降低目标对参数变化和干扰的敏感性,从而获得高精度的飞行模拟器性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信