{"title":"Designer Ge quantum-dot phototransistors for highly-integrated, broadband optical interconnects","authors":"M. Kuo, C. Chien, P. Liao, W. Lai, Pei-Wen Li","doi":"10.1109/INEC.2016.7589425","DOIUrl":null,"url":null,"abstract":"We report high-responsivity Ge quantum dots (QDs) MOS phototransistors as on-chip transducers for highly-integrated, broadband Si-based optical interconnects. Self-organized heterostructure of Ge-QD/SiO2/Si-channel is fabricated in a single step through selective oxidation of SiGe nano-pillars over a Si3N4 buffer layer on Si substrates. Dark current densities (10-7A/mm2), photocurrent-to-dark current ratio (~ 107) and photoresponsivities (>10 A/W), external quantum efficiency (~240%), and response time (1.4ns) are measured on the Ge-QD phototransistors under 850 nm illumination. Detection wavelength is tunable from near infrared to near ultraviolet by reducing the QD size from 90 to 7 nm, and the optimal photoresponsivity is tailored by the QD size and effective thickness of gate dielectrics.","PeriodicalId":416565,"journal":{"name":"2016 IEEE International Nanoelectronics Conference (INEC)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2016.7589425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report high-responsivity Ge quantum dots (QDs) MOS phototransistors as on-chip transducers for highly-integrated, broadband Si-based optical interconnects. Self-organized heterostructure of Ge-QD/SiO2/Si-channel is fabricated in a single step through selective oxidation of SiGe nano-pillars over a Si3N4 buffer layer on Si substrates. Dark current densities (10-7A/mm2), photocurrent-to-dark current ratio (~ 107) and photoresponsivities (>10 A/W), external quantum efficiency (~240%), and response time (1.4ns) are measured on the Ge-QD phototransistors under 850 nm illumination. Detection wavelength is tunable from near infrared to near ultraviolet by reducing the QD size from 90 to 7 nm, and the optimal photoresponsivity is tailored by the QD size and effective thickness of gate dielectrics.