Hybrid Kronecker compressive sensing for images

Thuong Nguyen Canh, Khanh Quoc Dinh, B. Jeon
{"title":"Hybrid Kronecker compressive sensing for images","authors":"Thuong Nguyen Canh, Khanh Quoc Dinh, B. Jeon","doi":"10.1109/ATC.2014.7043450","DOIUrl":null,"url":null,"abstract":"Natural images has certain level of both similarity and difference which can be efficiently represented by deterministic and random sensing matrices in compressive sensing. In this context, a hybrid sensing matrix which combines a deterministic DCT and a random matrix, is recently investigated. In this paper, we bring the concept of hybrid sensing matrix into Kronecker compressive sensing (KCS) of images. Extensive experiment has shown that the proposed hybrid KCS method performs better than either fully random or deterministic DCT matrix, and comparatively with other state-of the-art sensing schemes in terms of reconstruction quality.","PeriodicalId":333572,"journal":{"name":"2014 International Conference on Advanced Technologies for Communications (ATC 2014)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Technologies for Communications (ATC 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2014.7043450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Natural images has certain level of both similarity and difference which can be efficiently represented by deterministic and random sensing matrices in compressive sensing. In this context, a hybrid sensing matrix which combines a deterministic DCT and a random matrix, is recently investigated. In this paper, we bring the concept of hybrid sensing matrix into Kronecker compressive sensing (KCS) of images. Extensive experiment has shown that the proposed hybrid KCS method performs better than either fully random or deterministic DCT matrix, and comparatively with other state-of the-art sensing schemes in terms of reconstruction quality.
图像的混合Kronecker压缩感知
自然图像具有一定程度的相似性和差异性,压缩感知中的确定性感知矩阵和随机感知矩阵可以有效地表示这些相似性和差异性。在此背景下,最近研究了一种结合确定性DCT和随机矩阵的混合传感矩阵。本文将混合感知矩阵的概念引入图像的Kronecker压缩感知(KCS)中。大量的实验表明,所提出的混合KCS方法在重建质量方面优于完全随机或确定性DCT矩阵,并且与其他最先进的传感方案相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信