Modelling and characterization of an artificial neural network for infant cry recognition using mel-frequency cepstral coefficients

A. Bandala, A. M. Lim, Mark Anthony D. Cai, Allan Jeffrey C. Bacar, Aynna Claudine G. Manosca
{"title":"Modelling and characterization of an artificial neural network for infant cry recognition using mel-frequency cepstral coefficients","authors":"A. Bandala, A. M. Lim, Mark Anthony D. Cai, Allan Jeffrey C. Bacar, Aynna Claudine G. Manosca","doi":"10.1109/TENCON.2014.7022407","DOIUrl":null,"url":null,"abstract":"This paper is about the creation of an artificial neural network (ANN) in MATLAB to analyze the features extracted from calculating the mel-frequency cepstral coefficients (MFCC) of the raw audio data. The paper explains basic concepts about the ANN, as well as the MFCC and other relevant theories. Regarding the design of the ANN, it uses multiple infant crying sounds, as well as non-crying sounds, to create a sample training set with a corresponding target that determines whether the sound is a cry or not. The paper uses relevant concepts heavily utilized in speech recognition for the design of the infant cry recognition, modifies them, and adds a few more calculations to fit the desired application to compensate for the differences present in a cry from human speech.","PeriodicalId":292057,"journal":{"name":"TENCON 2014 - 2014 IEEE Region 10 Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2014 - 2014 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2014.7022407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is about the creation of an artificial neural network (ANN) in MATLAB to analyze the features extracted from calculating the mel-frequency cepstral coefficients (MFCC) of the raw audio data. The paper explains basic concepts about the ANN, as well as the MFCC and other relevant theories. Regarding the design of the ANN, it uses multiple infant crying sounds, as well as non-crying sounds, to create a sample training set with a corresponding target that determines whether the sound is a cry or not. The paper uses relevant concepts heavily utilized in speech recognition for the design of the infant cry recognition, modifies them, and adds a few more calculations to fit the desired application to compensate for the differences present in a cry from human speech.
婴儿哭声识别的人工神经网络的建模和表征使用mel频率倒谱系数
本文在MATLAB中建立了一个人工神经网络(ANN),对原始音频数据的mel-frequency倒谱系数(MFCC)的计算所提取的特征进行分析。本文阐述了人工神经网络的基本概念,以及MFCC等相关理论。在人工神经网络的设计上,它使用多个婴儿哭闹的声音和非哭闹的声音来创建一个样本训练集,该样本训练集有相应的目标来确定该声音是否是哭声。本文利用语音识别中大量使用的相关概念进行婴儿哭声识别的设计,并对其进行修改,并增加一些计算以适应所需的应用,以补偿哭声与人类语言之间存在的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信