MICS: Multimodal image collection summarization by optimal reconstruction subset selection

Jorge E. Camargo, F. González
{"title":"MICS: Multimodal image collection summarization by optimal reconstruction subset selection","authors":"Jorge E. Camargo, F. González","doi":"10.1109/COLOMBIANCC.2013.6637539","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to automatically select a set of representative images from a larger set of retrieved images for a given query. We define an image collection summary as a subset of images from the collection, which are visually and semantically representative. To build such a summary we propose MICS, a method that fuses two modalities, textual and visual, in a common latent space, and use it to find a subset of images from which the collection visual content could be reconstructed. We conducted experiments on a collection of tagged images and demonstrate the ability of our approach to build summaries with representative visual and semantic content. The initial results show that the proposed method is able to build a meaningful summary that can be integrated in an image collection exploration system.","PeriodicalId":409281,"journal":{"name":"2013 8th Computing Colombian Conference (8CCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Computing Colombian Conference (8CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COLOMBIANCC.2013.6637539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new method to automatically select a set of representative images from a larger set of retrieved images for a given query. We define an image collection summary as a subset of images from the collection, which are visually and semantically representative. To build such a summary we propose MICS, a method that fuses two modalities, textual and visual, in a common latent space, and use it to find a subset of images from which the collection visual content could be reconstructed. We conducted experiments on a collection of tagged images and demonstrate the ability of our approach to build summaries with representative visual and semantic content. The initial results show that the proposed method is able to build a meaningful summary that can be integrated in an image collection exploration system.
多模态图像采集汇总的最优重构子集选择
本文提出了一种针对给定查询从大量检索图像中自动选择一组代表性图像的新方法。我们将图像集合摘要定义为集合中图像的子集,这些子集在视觉上和语义上都具有代表性。为了构建这样的总结,我们提出了MICS,这是一种在共同潜在空间中融合文本和视觉两种模式的方法,并使用它来寻找图像子集,从中可以重建集合视觉内容。我们在一组标记图像上进行了实验,并展示了我们的方法构建具有代表性视觉和语义内容的摘要的能力。初步结果表明,该方法能够建立一个有意义的摘要,可以集成到图像采集探索系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信