Iori Kumagai, M. Morisawa, Shin'ichiro Nakaoka, F. Kanehiro
{"title":"Efficient Locomotion Planning for a Humanoid Robot with Whole-Body Collision Avoidance Guided by Footsteps and Centroidal Sway Motion","authors":"Iori Kumagai, M. Morisawa, Shin'ichiro Nakaoka, F. Kanehiro","doi":"10.1109/HUMANOIDS.2018.8624927","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a locomotion planning framework for a humanoid robot with an efficient footstep and whole-body collision avoidance planning, which enables the robot to traverse an unknown narrow space while utilizing its body structure like a human. The key idea of the proposed method is to reduce a large computational cost for the whole-body locomotion planning by executing global footstep planning first, which has a much smaller search space, and then performing a sequential whole-body posture planning while utilizing the resulting footsteps and a centroidal trajectory as a guide. In the global footstep planning phase, we modify bounding box of the robot based on the centroidal sway motion. This idea enables the planner to obtain appropriate footsteps for next whole-body motion planning. Then, we execute sequential whole-body collision avoidance motion planning by prioritized inverse kinematics based on the resulting footsteps and centroidal trajectory, which enables the robot to plan whole-body collision avoidance motion for each step within less than 100ms at worst. The major contribution of our paper is solving the problem of the increasing computational cost for whole-body motion planning and enabling a humanoid robot to execute adaptive locomotion planning on the spot in an unknown narrow space.","PeriodicalId":433345,"journal":{"name":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2018.8624927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, we propose a locomotion planning framework for a humanoid robot with an efficient footstep and whole-body collision avoidance planning, which enables the robot to traverse an unknown narrow space while utilizing its body structure like a human. The key idea of the proposed method is to reduce a large computational cost for the whole-body locomotion planning by executing global footstep planning first, which has a much smaller search space, and then performing a sequential whole-body posture planning while utilizing the resulting footsteps and a centroidal trajectory as a guide. In the global footstep planning phase, we modify bounding box of the robot based on the centroidal sway motion. This idea enables the planner to obtain appropriate footsteps for next whole-body motion planning. Then, we execute sequential whole-body collision avoidance motion planning by prioritized inverse kinematics based on the resulting footsteps and centroidal trajectory, which enables the robot to plan whole-body collision avoidance motion for each step within less than 100ms at worst. The major contribution of our paper is solving the problem of the increasing computational cost for whole-body motion planning and enabling a humanoid robot to execute adaptive locomotion planning on the spot in an unknown narrow space.