DoCluster: Efficient mining maximal biclusters without candidate maintenance in the function-resource matrix

Lihua Zhang, Zhengjun Zhai, Miao Wang, Guoqing Wang
{"title":"DoCluster: Efficient mining maximal biclusters without candidate maintenance in the function-resource matrix","authors":"Lihua Zhang, Zhengjun Zhai, Miao Wang, Guoqing Wang","doi":"10.1109/BMEI.2013.6747025","DOIUrl":null,"url":null,"abstract":"The functional layer is the pillar of the PHM system or avionics safety system. Its effectiveness is the core of system task effectives. In this paper we proposed a new bicluster mining algorithm: DoCluster, to effectively mine all biclusters with maximal variant usage rate and low usage rate from the discrete function-resource matrix. Firstly, DoCluster algorithm constructs a sample weighted graph which includes all resource collections between two samples that meet the definition of variant usage rate or low usage rate; secondly, all biclusters with maximal variant usage rate and low usage rate satisfying the definition are mined by using sample-growth and depth-first method in the constructed weighted graph. To improve the mining efficiency of the algorithm, DoCluster algorithm uses multiple pruning strategies to ensure the mining of maximal bicluster without candidate maintenance. The experimental results show our algorithm is more efficient than other two algorithms.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6747025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The functional layer is the pillar of the PHM system or avionics safety system. Its effectiveness is the core of system task effectives. In this paper we proposed a new bicluster mining algorithm: DoCluster, to effectively mine all biclusters with maximal variant usage rate and low usage rate from the discrete function-resource matrix. Firstly, DoCluster algorithm constructs a sample weighted graph which includes all resource collections between two samples that meet the definition of variant usage rate or low usage rate; secondly, all biclusters with maximal variant usage rate and low usage rate satisfying the definition are mined by using sample-growth and depth-first method in the constructed weighted graph. To improve the mining efficiency of the algorithm, DoCluster algorithm uses multiple pruning strategies to ensure the mining of maximal bicluster without candidate maintenance. The experimental results show our algorithm is more efficient than other two algorithms.
DoCluster:有效地挖掘最大的双聚类,而不需要在功能-资源矩阵中进行候选维护
功能层是PHM系统或航空电子安全系统的支柱。其有效性是系统任务有效性的核心。本文提出了一种新的双聚类挖掘算法DoCluster,从离散函数-资源矩阵中有效地挖掘出变量使用率最大和使用率最低的所有双聚类。首先,DoCluster算法构造一个样本加权图,该图包含两个样本之间满足变使用率或低使用率定义的所有资源集合;其次,在构建的加权图中,利用样本增长和深度优先的方法,挖掘出变量使用率最大和使用率低的所有满足定义的双聚类;为了提高算法的挖掘效率,DoCluster算法采用了多种剪枝策略,以保证在不维护候选簇的情况下挖掘出最大的双簇。实验结果表明,该算法比其他两种算法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信