Quantized Compressed Sensing via Deep Neural Networks

Markus Leinonen, M. Codreanu
{"title":"Quantized Compressed Sensing via Deep Neural Networks","authors":"Markus Leinonen, M. Codreanu","doi":"10.1109/6GSUMMIT49458.2020.9083783","DOIUrl":null,"url":null,"abstract":"Compressed sensing (CS) is an efficient technique to acquire sparse signals in many wireless applications to, e.g., reduce the amount of data and save low-power sensors' batteries. This paper addresses efficient acquisition of sparse sources through quantized noisy compressive measurements where the encoder and decoder are realized by deep neural networks (DNNs). We devise a DNN based quantized compressed sensing (QCS) method aiming at minimizing the mean-square error of the signal reconstruction. Once trained offline, the proposed method enjoys extremely fast and low complexity decoding in the online communication phase. Simulation results demonstrate the superior rate-distortion performance of the proposed method compared to a polynomial-complexity QCS reconstruction scheme.","PeriodicalId":385212,"journal":{"name":"2020 2nd 6G Wireless Summit (6G SUMMIT)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd 6G Wireless Summit (6G SUMMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6GSUMMIT49458.2020.9083783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Compressed sensing (CS) is an efficient technique to acquire sparse signals in many wireless applications to, e.g., reduce the amount of data and save low-power sensors' batteries. This paper addresses efficient acquisition of sparse sources through quantized noisy compressive measurements where the encoder and decoder are realized by deep neural networks (DNNs). We devise a DNN based quantized compressed sensing (QCS) method aiming at minimizing the mean-square error of the signal reconstruction. Once trained offline, the proposed method enjoys extremely fast and low complexity decoding in the online communication phase. Simulation results demonstrate the superior rate-distortion performance of the proposed method compared to a polynomial-complexity QCS reconstruction scheme.
基于深度神经网络的量化压缩感知
压缩感知(CS)在许多无线应用中是一种获取稀疏信号的有效技术,例如减少数据量和节省低功耗传感器电池。本文研究了通过量化噪声压缩测量来有效获取稀疏源,其中编码器和解码器由深度神经网络(dnn)实现。本文设计了一种基于深度神经网络的量化压缩感知(QCS)方法,以最小化信号重构的均方误差。一旦离线训练,该方法在在线通信阶段具有极快的解码速度和低复杂度。仿真结果表明,与多项式复杂度的QCS重构方案相比,该方法具有更好的率失真性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信