Evaluating Pairwise Variable Selection Methods

E. Reschenhofer
{"title":"Evaluating Pairwise Variable Selection Methods","authors":"E. Reschenhofer","doi":"10.28924/ada/stat.2.11","DOIUrl":null,"url":null,"abstract":"This paper discusses novel methods for the pairwise selection of explanatory variables from a large set of candidate pairs. These methods are applied to monthly time series of surface temperature and their performance is compared with that of conventional selection criteria such as AIC and BIC. In our frequency-domain analysis of the temperature datasets, the pairs are defined in a natural way as cosine and sine vectors of the same frequency. The results show that the new criteria are the only ones which are able to correctly identify seasonal patterns.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"379 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses novel methods for the pairwise selection of explanatory variables from a large set of candidate pairs. These methods are applied to monthly time series of surface temperature and their performance is compared with that of conventional selection criteria such as AIC and BIC. In our frequency-domain analysis of the temperature datasets, the pairs are defined in a natural way as cosine and sine vectors of the same frequency. The results show that the new criteria are the only ones which are able to correctly identify seasonal patterns.
评估两两变量选择方法
本文讨论了从大量候选对中两两选择解释变量的新方法。将这些方法应用于地表温度月时间序列,并与AIC和BIC等常规选择标准的性能进行了比较。在我们对温度数据集的频域分析中,这些对以一种自然的方式定义为相同频率的余弦和正弦向量。结果表明,新标准是唯一能够正确识别季节模式的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信